Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Neural Gradient Evaluation through Nanodevice Dynamics

Description du projet

Plasticité synaptique et «cognition» dans des nanoréseaux de memristors et de composants spintroniques

L’intelligence artificielle (IA) transforme la façon dont les machines «pensent» grâce à des logiciels et des algorithmes qui répondent de manière intelligente et adaptative aux problèmes qui se présentent, prenant souvent des décisions en temps réel et tirant des enseignements du passé. Les systèmes physiques – matériels plutôt que logiciels – qui imitent les neurones, les synapses et leurs comportements, individuellement ou collectivement, se rapprochent un peu plus du fonctionnement du cerveau humain. Le projet Grenadyn, financé par l’UE, met au point de tels systèmes à partir de memristors et autres nanocomposants spintroniques capables de se réorganiser de manière dynamique et d’apprendre sans supervision. L’objectif final est de faire la démonstration d’une puce intégrant des dispositifs nanosynaptiques sur CMOS et capable d’atteindre des taux de reconnaissance des formes comparables à ceux de l’IA.

Objectif

The Grenadyn project will demonstrate that assemblies of imperfect, dynamical nanodevices can self-learn through physical principles, like biological neurons and synapses do, with performance comparable to the best artificial intelligence (AI) algorithms. For this, Grenadyns networks will minimize their effective energy together with the recognition error when learning.

The starting point of Grenadyn is an algorithm called Equilibrium Propagation, developed by AI pioneer Yoshua Bengio, that takes its roots in physics. We will assemble memristive as well as spintronic nanocomponents in neural networks that perform pattern recognition through Equilibrium Propagation. We will show that these dynamical networks learn by nudging their outputs towards the desired solution through a spring-like force, and letting nano-synapses and neurons reorganize themselves towards equilibrium. We will show that they can also learn directly from the data, without supervision.

We will induce a high resilience to imperfections in these networks through self-adaptation and digitization. We will demonstrate by experiments and simulations that our physical neural networks made of variable elements compute with an accuracy similar to software neural networks trained with backpropagation. We will produce a chip integrating nanosynaptic devices on CMOS and achieve state-of-the-art recognition rates on AI image benchmarks.

We will enhance the network functionalities by leveraging their dynamical properties through synchronization and time-delayed feedback. Finally, we extend Grenadyns in-materio self-learning to any assembly of coupled dynamical nanodevices, providing novel horizons for multifunctional materials and devices.

Grenadyns scientific advances in condensed-matter physics, non-linear dynamics, electronics, and AI will give the foundations for deep network chips that contain billions of nano-synapses and nano-neurons and self-learn with state-of-the-art accuracy.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
La classification de ce projet a été validée par l'équipe qui en a la charge.

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-ADG - Advanced Grant

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) ERC-2020-ADG

Voir tous les projets financés au titre de cet appel

Institution d’accueil

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 2 462 587,00
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 2 462 587,00

Bénéficiaires (1)

Mon livret 0 0