Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

Neural Gradient Evaluation through Nanodevice Dynamics

Projektbeschreibung

Synaptische Plastizität und „Kognition“ in Nanonetzwerken aus memristiven und spintronischen Komponenten

Künstliche Intelligenz verändert aufgrund von Software und Algorithmen, die intelligent und adaptiv auf eintretende Probleme reagieren, oft in Echtzeit Entscheidungen treffen und aus der Vergangenheit lernen, die Art und Weise, wie Maschinen „denken“. Einen Schritt näher der Funktion des menschlichen Gehirns sind physische Systeme – Hardware anstatt Software – die entweder einzeln oder gemeinsam Neuronen und Synapsen sowie deren Verhalten nachahmen. Das EU-finanzierte Projekt Grenadyn entwickelt derartige Systeme aus memristiven und spintronischen Nanokomponenten, die sich dynamisch reorganisieren und ohne Aufsicht lernen können. Ultimatives Ziel ist die Demonstration eines Chips, der nanosynaptische Bauteile auf CMOS-Basis integriert und Mustererkennungsraten erreicht, die sich mit denen der künstlichen Intelligenz messen können.

Ziel

The Grenadyn project will demonstrate that assemblies of imperfect, dynamical nanodevices can self-learn through physical principles, like biological neurons and synapses do, with performance comparable to the best artificial intelligence (AI) algorithms. For this, Grenadyns networks will minimize their effective energy together with the recognition error when learning.

The starting point of Grenadyn is an algorithm called Equilibrium Propagation, developed by AI pioneer Yoshua Bengio, that takes its roots in physics. We will assemble memristive as well as spintronic nanocomponents in neural networks that perform pattern recognition through Equilibrium Propagation. We will show that these dynamical networks learn by nudging their outputs towards the desired solution through a spring-like force, and letting nano-synapses and neurons reorganize themselves towards equilibrium. We will show that they can also learn directly from the data, without supervision.

We will induce a high resilience to imperfections in these networks through self-adaptation and digitization. We will demonstrate by experiments and simulations that our physical neural networks made of variable elements compute with an accuracy similar to software neural networks trained with backpropagation. We will produce a chip integrating nanosynaptic devices on CMOS and achieve state-of-the-art recognition rates on AI image benchmarks.

We will enhance the network functionalities by leveraging their dynamical properties through synchronization and time-delayed feedback. Finally, we extend Grenadyns in-materio self-learning to any assembly of coupled dynamical nanodevices, providing novel horizons for multifunctional materials and devices.

Grenadyns scientific advances in condensed-matter physics, non-linear dynamics, electronics, and AI will give the foundations for deep network chips that contain billions of nano-synapses and nano-neurons and self-learn with state-of-the-art accuracy.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
Das Projektteam hat die Klassifizierung dieses Projekts bestätigt.

Schlüsselbegriffe

Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

ERC-ADG - Advanced Grant

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) ERC-2020-ADG

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Gastgebende Einrichtung

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 2 462 587,00
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

€ 2 462 587,00

Begünstigte (1)

Mein Booklet 0 0