Project description
Genome-wide technology advances cancer diagnostics
The EU-funded TWIGA project aims to develop the first generation of spatially resolved DNA methodologies to reveal the molecular landscape of cancer genomes in tissues. The goal is to demonstrate the application of the approach focusing on prostate and breast cancer, which display genomic alterations of multiclonality, amplification and gene fusions. The spatial transcriptomics (ST) technology has been shown to resolve the transcriptomic landscapes of tissue sections in situ. The current project objective is to apply ST tools to perform tissue-wide identification of genomic alterations in cancer via spatial barcoding on glass slides. The advanced knowledge of genomic alterations in situ will improve understanding of the progression from precancer conditions to malignancy and metastases.
Objective
We aim to develop the first generation of spatially resolved DNA methodologies to uncover the underlaying molecular landscape of cancer genomes in tissues. Our efforts will focus on a novel genome-wide technology to study genomic integrity in its spatial context, currently a major challenge in the field. The research program is based on developing new experimental protocols and new computational analysis methods. We aim to demonstrate the utility of the method in cancer applications focusing on prostate and breast cancer that display genomic alterations with hallmarks of multiclonality, amplifications and gene fusions.
We have previously demonstrated the Spatial Transcriptomics (ST) technology to successfully resolve the transcriptomic landscapes of tissue sections in situ. This was the first demonstrated method to provide transcriptome-wide analysis in a spatial tissue context (Ståhl et al, 2016, review by Asp et al 2020). With the establishment of the technology we have been able to develop advanced computational strategies to explore spatially barcoded transcriptomes. We have, in a series of papers, demonstrated the value and impact to capture and link gene expression information to morphology. For example, we have employed our know-how in (i) cell atlas projects (Asp et al, 2019; Ortiz et al, 2020) (ii) understanding temporal aspects of neurological disease (Maniatis et al, 2019, Chen et al, 2020) (iii) deconvoluting the heterogeneity in cancer (Berglund et al, 2018, Ji et al, 2020).
This ambitious proposal seeks to pioneer the use of the tools to perform tissue-wide identification of genomic alterations in cancer (TWIGA) through spatial barcoding on glass slides. This effort will enable us to, in an unsupervised manner, describe genomes in tissue sections for the first time. We are convinced that an increased knowledge of genomic alterations in situ will improve our understanding of cancer from precancer conditions to malignancy and spread.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences genetics RNA transcriptomes
- medical and health sciences clinical medicine oncology
- engineering and technology materials engineering amorphous solids
- natural sciences biological sciences genetics genomes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2020-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
100 44 STOCKHOLM
Sweden
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.