Descripción del proyecto
Un modelo innovador para estudiar la dinámica respiratoria pulmonar
El proyecto BREATHE, financiado con fondos europeos, tiene como objetivo desarrollar el primer modelo computacional integral del sistema respiratorio empleando los últimos avances en la simulación de altas prestaciones. La estrategia se basará en un modelo reciente de un dispositivo de resolución de corriente incompresible listo a exaescala que se modificará para afrontar problemas específicos de los pulmones y podrá capturar la interacción entre los tejidos y el transporte de gases. La zona respiratoria se representará con un medio poroelástico multifásico con límites pleurales específicos y la circulación pulmonar acoplada, mediante una red de dimensiones reducidas integrada y fases adicionales. La individualización del modelo y la adaptación a las condiciones del avance de las enfermedades se llevarán a cabo mediante un nuevo método de aprendizaje probabilístico. El sistema del modelo desarrollado proporcionará información, tanto a médicos como a científicos biomédicos, sobre los procesos dinámicos de los pulmones humanos.
Objetivo
While the human lung is undoubtedly an essential organ, and respiratory diseases are leading causes of death and disability in the world, there still exist a lot of mysteries wrt vital processes. The main reason for this is the complete lack of measurement methods or medical imaging techniques that would allow to study dynamic processes in essential parts of a living human lung. While this would be a perfect setup for computational modeling, existing models suffer from severe constraints disabling them to unveil those essential secrets. This project aims to build on a number of most promising recent advances in modeling and high-performance simulation to present the first comprehensive computational model of the respiratory system. For this purpose, it builds upon a recent exascale-ready incompressible flow solver, toughen it up for lung specific challenges and enrich it with multiphysics capabilities to capture tissue interaction and gas transport. Parts of the respiratory zone will be represented by multiphase poroelastic media and novel pleural boundary conditions will be developed. The coupled pulmonary circulation will be included and represented by an embedded reduced dimensional network and additional phases. In order to appropriately individualize the model and also being able to adapt it during disease progression, a novel physics-based probabilistic learning approach will be developed. This will allow to use most of the very diverse and scarce data in clinical settings. Finally, special models will be developed to bridge to the micro scale. The models developed and studied here will provide unprecedented insights for biomedical scientists, and practitioners at the same time, and will help to substantially reduce elaborate animal and multicenter studies. This will be a crucial step in order to establish a shift of paradigm in health care. Novel models/tools developed here will also be very useful in other areas of biomedical engineering and beyond.
Ámbito científico
- medical and health sciencesclinical medicinepneumology
- medical and health sciencesmedical biotechnology
- medical and health scienceshealth sciencesinfectious diseasesRNA virusescoronaviruses
- natural sciencesbiological sciencesbiophysics
- natural sciencescomputer and information sciencescomputational sciencemultiphysics
Palabras clave
Programa(s)
Régimen de financiación
ERC-ADG - Advanced GrantInstitución de acogida
80333 Muenchen
Alemania