Projektbeschreibung
Neue Bauteile mit verbesserter Bruchzähigkeit
In den europäischen Industriesektoren der Luft- und Raumfahrt und des Verkehrswesens kommen zunehmend additiv gefertigte Bauteile aus faserverstärkten Verbundwerkstoffen zum Einsatz, die mithilfe von Schmelzschichtverfahren hergestellt wurden. Dies ist nicht verwunderlich, wenn man berücksichtigt, welche Vorteile sich daraus ergeben – geringere Maschinen-, Material- und Arbeitskosten, weniger Fertigungsabfälle und die Verwendung leistungsfähigerer Materialien. Doch sie bringen auch einen Nachteil mit sich: Bauteilen aus faserverstärkten Verbundwerkstoffen ist eine komplexe – und in einigen Fällen mosaikartige – Geometrie zu eigen, was zu Verbindungs- und quasi-spröden Schadensmechanismen führt. Aus diesem Grund wird das EU-finanzierte Projekt AI2AM Komponenten mit erhöhter Bruchzähigkeit entwickeln. Konkret sollen Ersatzmodelle in einem neuen Rahmenwerk zur Topologieoptimierung eingesetzt und zur Herstellung optimierter 3D-gedruckter Geometrien ertüchtigt werden.
Ziel
"Additively Manufactured fibre reinforced composite (AMC) components manufactured via fused deposition modelling (FDM)
rapidly find applications within the European aerospace and transport industry , due to their well-known advantages mainly
relating to less machine, material and labour costs, less manufacturing waste, and usage of more efficient materials. A major
drawback of AMC components is their usually complex and in cases tessellated geometry; this gives rise to combined (e.g.
fibre pull-outs and matrix cracking) and quasi-brittle damage mechanisms that deviate from the usual “high strength and
ductile metal” design paradigm. Such a “complexity”, if controlled, can result in components of tailored mechanical
properties, e.g. of increased fracture toughness and pseudo-ductile post fracture response. Unfortunately, current analysis
and design methods lack the necessary level of refinement, or the underlying theoretical framework indeed, to efficiently
address this critical issue.
AI2AM aims to deliver a holistic approach to additively manufacture topologically optimum composite components of
increased fracture toughness. It will achieve this by developing a state-of-the-art fracture simulation framework for composite
structures harnessing the fidelity and computational advantages of phase field modelling for fracture and scaled boundary
finite element methods.
This high fidelity physics based ""continuum toolbox"" will be used to train surrogate models based on machine learning
methods. The surrogates will then be deployed within a novel topology optimisation framework to deliver optimal and 3D
printed geometries. The envisaged methodology crosses the boundaries of computational mechanics, optimisation, and
machine learning and brings together a talented academic with world-class experts in topology optimisation, composites,
and additive manufacturing."
Wissenschaftliches Gebiet
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht.
- engineering and technologymaterials engineeringcomposites
- natural sciencesmathematicspure mathematicstopology
- natural sciencesmathematicspure mathematicsgeometry
- engineering and technologymechanical engineeringmanufacturing engineeringadditive manufacturing
- natural sciencescomputer and information sciencesartificial intelligencemachine learning
Schlüsselbegriffe
Programm/Programme
Thema/Themen
Aufforderung zur Vorschlagseinreichung
Andere Projekte für diesen Aufruf anzeigenFinanzierungsplan
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)Koordinator
157 72 ATHINA
Griechenland