Project description
How mitochondrial efficiency helps organisms adapt to climate change
Predicting how organisms will cope with climate change is a priority for biological research. The EU-funded MITOCHADAPT project will therefore test individual- and population-level variation to determine species-level responses to climate change and identify thermal adaptation. The work will measure the evolutionary potential of developmental thermal physiology across natural populations of a widely distributed freshwater fish and test the thermal sensitivity of mitochondrial efficiency (ATP/O), an underlying mechanism that mediates adaptation to a warmer climate. It will also identify how developmental temperature affects ATP/O, determine how selection and heritability of developmental thermal physiology vary across populations, and how ATP/O may mediate temperature-dependent selection. Finally, meta-analysis will summarise patterns between ATP/O and environment across species.
Objective
The world is undergoing rapid environmental change, and organisms are growing up in environments very different to those in which they evolved. Predicting how organisms will cope with this unprecedented scale of change is a key priority of biological research. The proposed work will be a significant advance to the field by measuring the evolutionary potential of developmental thermal physiology across natural populations, testing an underlying mechanism mediating adaptation to a warmer climate: namely the thermal sensitivity of mitochondrial efficiency (ATP/O). Outcomes will advance both basic biological knowledge, and applied climate change responses which are of importance to EU citizens, by testing individual- and population- level variation to predict species-level responses to climate change, and identifying a potentially general mechanism for thermal adaptation that can focus conservation efforts. I will use a combination of field work with laboratory measurements and techniques on natural populations of a widely distributed freshwater fish, and meta-analytical techniques, to target the following novel objectives: Objective 1) Test for divergence in mitochondrial efficiency (ATP/O) and developmental thermal physiology across locally adapted populations spanning a wide latitudinal gradient; Objective 2) Identify how developmental temperature affects ATP/O; Objective 3) Determine how selection and heritability of developmental thermal physiology varies across populations, and how ATP/O may mediate temperature-dependent selection; Objective 4) Summarise the generality of patterns between ATP/O and environment across species using meta-analysis. This project will draw from and expand upon the combined research track-records and strengths of my work in early-life history and quantitative genetics, with that of hosts Prof. Metcalfe (subcellular physiology) and Prof. Seebacher (whole-animal physiology) to achieve my future research career goals.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
G12 8QQ Glasgow
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.