Descrizione del progetto
Tecnologia di apprendimento profondo per decarbonizzare lo streaming video
Lo streaming video fa male all’ambiente. Alcuni studi mostrano che 60 minuti di streaming in Europa hanno un’impronta di carbonio equivalente a guidare per 250 metri. Le tecnologie di compressione video possono aiutare a invertire questa tendenza riducendo i dati utilizzati per codificare i contenuti video digitali senza perdita di qualità. Sebbene i principali mezzi di informazione stiano investendo in metodi per rivoluzionare la compressione di immagini/video, essi sono difficili da implementare nei dispositivi di consumo. Il progetto FALCON, finanziato dall’UE, studierà un nuovo quadro per sviluppare una compressione di immagini e video veloce ed efficiente dal punto di vista energetico basata sull’apprendimento profondo per ridurre la loro impronta di carbonio. I risultati favoriranno importanti politiche dell’UE, come l’accordo di Parigi e il Green Deal europeo.
Obiettivo
The emerging Learned Compression (LC) methods show great potential to revolutionize image/video compression, and major media industries are investing heavily in this field. However, the high computational complexity of these methods makes it difficult to employ them in consumer devices, and this obstacle discourages using them in future compression standards, such as JPEG and MPEG, despite their superior performance compared to traditional methods. This project will investigate a novel framework for developing fast and energy-efficient Deep Learning-based compression. We will develop methods that (1) greatly improve the compression efficiency of LC, and (2) significantly reduce its computational complexity and energy consumption. Given the huge share of video industry in global Greenhouse gas emission, this will be a big step towards important EU policies such as the Paris agreement and the EU Green Deal. The objectives of the project are achieved via: (i) splitting the coding into smaller tasks, (ii) investigating efficient learning methods (including Operational Neural Networks, an invention of the supervisor of the project), and (iii) integrating human perception into image/video coding.
The experienced researcher holds a PhD in computer engineering, during which he worked on accelerating the encoding process of compression standards. He has a background and skill-set in hardware engineering, signal processing, media technology, and machine learning, which is necessary for this interdisciplinary project. The project will be carried out under the supervision of an internationally famous scientist who has extensive experience in both machine learning and video compression. The host institution in Finland has a long experience in EU funding and collaborations with industries. The results and findings will be published in top international journals and conferences. Moreover, some findings will be considered for possible exploitation in future MPEG/JPEG standards.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
- ingegneria e tecnologia ingegneria elettrica, ingegneria elettronica, ingegneria informatica ingegneria elettronica elaborazione del segnale
- ingegneria e tecnologia ingegneria elettrica, ingegneria elettronica, ingegneria informatica ingegneria elettronica hardware
- scienze sociali economia e commercio scienze economiche economia sostenibile
- scienze naturali informatica e scienze dell'informazione intelligenza artificiale apprendimento automatico
- scienze naturali informatica e scienze dell'informazione intelligenza artificiale intelligenza computazionale
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Parole chiave
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
PROGRAMMA PRINCIPALE
Vedi tutti i progetti finanziati nell’ambito di questo programma -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Vedi tutti i progetti finanziati nell’ambito di questo programma
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
(si apre in una nuova finestra) H2020-MSCA-IF-2020
Vedi tutti i progetti finanziati nell’ambito del bandoCoordinatore
Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.
33100 TAMPERE
Finlandia
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.