Descrizione del progetto
Tecnologia di apprendimento profondo per decarbonizzare lo streaming video
Lo streaming video fa male all’ambiente. Alcuni studi mostrano che 60 minuti di streaming in Europa hanno un’impronta di carbonio equivalente a guidare per 250 metri. Le tecnologie di compressione video possono aiutare a invertire questa tendenza riducendo i dati utilizzati per codificare i contenuti video digitali senza perdita di qualità. Sebbene i principali mezzi di informazione stiano investendo in metodi per rivoluzionare la compressione di immagini/video, essi sono difficili da implementare nei dispositivi di consumo. Il progetto FALCON, finanziato dall’UE, studierà un nuovo quadro per sviluppare una compressione di immagini e video veloce ed efficiente dal punto di vista energetico basata sull’apprendimento profondo per ridurre la loro impronta di carbonio. I risultati favoriranno importanti politiche dell’UE, come l’accordo di Parigi e il Green Deal europeo.
Obiettivo
The emerging Learned Compression (LC) methods show great potential to revolutionize image/video compression, and major media industries are investing heavily in this field. However, the high computational complexity of these methods makes it difficult to employ them in consumer devices, and this obstacle discourages using them in future compression standards, such as JPEG and MPEG, despite their superior performance compared to traditional methods. This project will investigate a novel framework for developing fast and energy-efficient Deep Learning-based compression. We will develop methods that (1) greatly improve the compression efficiency of LC, and (2) significantly reduce its computational complexity and energy consumption. Given the huge share of video industry in global Greenhouse gas emission, this will be a big step towards important EU policies such as the Paris agreement and the EU Green Deal. The objectives of the project are achieved via: (i) splitting the coding into smaller tasks, (ii) investigating efficient learning methods (including Operational Neural Networks, an invention of the supervisor of the project), and (iii) integrating human perception into image/video coding.
The experienced researcher holds a PhD in computer engineering, during which he worked on accelerating the encoding process of compression standards. He has a background and skill-set in hardware engineering, signal processing, media technology, and machine learning, which is necessary for this interdisciplinary project. The project will be carried out under the supervision of an internationally famous scientist who has extensive experience in both machine learning and video compression. The host institution in Finland has a long experience in EU funding and collaborations with industries. The results and findings will be published in top international journals and conferences. Moreover, some findings will be considered for possible exploitation in future MPEG/JPEG standards.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
- ingegneria e tecnologiaingegneria elettrica, ingegneria elettronica, ingegneria informaticaingegneria elettronicaelaborazione del segnale
- ingegneria e tecnologiaingegneria elettrica, ingegneria elettronica, ingegneria informaticaingegneria elettronicahardware
- scienze socialieconomia e commercioscienze economicheeconomia sostenibile
- scienze naturaliinformatica e scienze dell'informazioneintelligenza artificialeapprendimento automatico
- scienze naturaliinformatica e scienze dell'informazioneintelligenza artificialeintelligenza computazionale
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Programma(i)
Argomento(i)
Meccanismo di finanziamento
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)Coordinatore
33100 Tampere
Finlandia