Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

New, realistic and robust models for cryptocurrency volatility

Descripción del proyecto

Predicción del valor de las criptomonedas considerando la opinión pública

Es difícil hacer predicciones sobre el mercado de las criptomonedas. A diferencia de las acciones y los tipos de cambio, que están influenciados por los indicadores económicos, los precios de las criptomonedas se rigen por las opiniones. El proyecto CryptoVolatility, financiado con fondos europeos, explorará nuevas formas de prever la volatilidad de las criptomonedas. En concreto, construirá una máquina que generará fases discretas de opinión diarias utilizando noticias y datos de búsqueda en internet. A través de redes neuronales artificiales para sopesar las opiniones, se espera que esta herramienta ayude a los reguladores y a los inversores a conocer mejor la volatilidad de las criptomonedas. A largo plazo, esta nueva herramienta también permitirá diseñar políticas que ayuden a superar las crisis financieras.

Objetivo

Forecasting cryptocurrency volatility is a topic of interest in quantitative finance. A growing number of studies argue that compared to equty price cryptocurrency prices are to a large and perhaps abnormal degree driven by sentiments. However, econometric studies focus on forcing conditional volatility models developed for equity return volatility to fit on cryptocurrency data despite being aware that estimation techniques developed for analyzing equity price or commodity price volatility lack robustness and do not work as intended. Is it possible to propose solutions to deal with the mentioned shortcomings? Is it possible to suggest a new family of models? If so, how? The purpose of New, realistic and robust models for cryptocurrency volatility is to answer these questions by suggesting new and more realistic conditional volatility models accompanied with reliable cross-disciplinary estimation techniques to forecast cryptocurrency price volatility. What is novel and innovative about the suggested framework is that contrary to the current literature our point of departure is the empirical features observed in cryptocurrency prices combined with a useful tool, namely, artificial neural networks used to measure sentiments. Our aim is to build a machine that produces discrete sentiment phases each day using news articles and internet search data. Once we have identified the number of phases and determined, which phase an observation at a given time-period belongs to following neural network estimation, we can estimate the model parameters, jumps and filter out the continuous conditional volatility process contemporaneously using particle filtering techniques. Besides academics, this proposal is also relevant for regulators and investors as they can learn a great deal by understanding how cryptocurrency volatility actually behaves. Regulators can use sentiment labels from the neural network to design policies to contrast and overcome financial crises in the future.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véase: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

Para utilizar esta función, debe iniciar sesión o registrarse

Régimen de financiación

MSCA-IF -

Coordinador

TAMPEREEN KORKEAKOULUSAATIO SR
Aportación neta de la UEn
€ 190 680,96
Mi folleto 0 0