Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Prediction of Children's Math Learning Disability Using Longitudinal Brain Data and Machine Learning

Description du projet

Mesurer l’activité cérébrale des enfants pour détecter les troubles du calcul

La détection des troubles des apprentissages en mathématiques (TAM) n’est pas chose facile. Il s’agit pourtant d’une tâche cruciale afin de pouvoir apporter un soutien approprié aux enfants. Les approches informatiques actuelles permettant de prédire les TAM sont limitées. Pour remédier à cette situation, le projet MathDevBML, financé par l’UE, construira un modèle informatique visant à prédire les TAM avant l’école primaire. Plus particulièrement, il combinera les données cérébrales d’enfants d’âge préscolaire avec des techniques d’apprentissage automatique de pointe. Le projet mènera des expériences d’imagerie par résonance magnétique dans le cadre desquelles des enfants d’âge préscolaire de 5 ans seront exposés à des stimuli visuels consistant en des motifs agencés sous forme de points. Leur activité cérébrale sera à nouveau mesurée à leurs 7 ans. De nombreux algorithmes seront appliqués aux données sur le cerveau des enfants de 5 ans afin de prédire le développement de TAM à l’âge de 7 ans.

Objectif

Mathematics is the fundamental basis of modern science and technology. However, individuals differ in mathematical ability, and 5%–7% of the population suffers from a math learning disability (MLD). To provide appropriate support for children with MLD, detecting MLD before entering the formal education system is essential. Previous studies have identified some of the neural correlates of MLD; however, computational approaches to predict MLD have been limited. Also, most studies recruited children who were enrolled in elementary school, which is problematic because negative math experience may worsen the difficulties. This research project aims to address these gaps. By combining brain data of preschoolers with state-of-the-art machine learning techniques, I will construct a computational model aiming at predicting MLD before children enter elementary school. The host laboratory of Dr. Jérôme Prado is currently conducting magnetic resonance imaging (MRI) experiments in 5-year-old preschoolers. Participants are presented with visual stimuli consisting of dot patterns, and their brain activity is measured using functional MRI. I will repeat the same MRI task two years later (when children are 7). The math skills of participants will be measured at the age of 7. Multiple algorithms (model-based and model-free approaches) will be applied to the brain data at the age of 5 to predict the occurrence of MLD at the age of 7. Computational models will be applied to other cognitive abilities (language, reasoning), and the influence on atypical math development will be examined. I will benefit from the strong administrative support and advanced neuroimaging resources at the Lyon Neuroscience Research Center, where I will receive training in technical and leadership skills. This research project is an excellent opportunity for me and the host to contribute to the growth of an innovative research field combining developmental neuroscience and machine learning techniques.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) H2020-MSCA-IF-2020

Voir tous les projets financés au titre de cet appel

Coordinateur

INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 184 707,84
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 184 707,84
Mon livret 0 0