Project description
The first-ever mechanical qubit will be realised with carbon nanotubes
Quantum computers rely on quantum bits or qubits that can represent numerous combinations of zeros and ones at the same time thanks to superposition. They have been realised using the quantum states of things such as electrons in materials including superconductors, semiconductors and trapped ions. Now, the EU-funded CNTQUBIT project is planning to deliver the first-ever nanomechanical qubit. The qubit will be realised using a suspended carbon nanotube mechanical resonator alongside a double quantum dot that will enable strong coupling to a 'high quality' vibrational mode. Addressing and reading out the qubit will be accomplished via the state-dependent frequency shift of a superconducting microwave cavity with which the qubit will be integrated.
Objective
This proposal outlines our vision for generating the first mechanical quantum bit (qubit) ever produced. The qubit will be realized with a carbon nanotube (CNT) in two steps. First, a carbon nanotube mechanical resonator is prepared in its quantum ground state and strongly coupled to an embedded electronic two-level system (eTLS). The eTLS is realized by carefully tuning the energy states of two spatially distinct charge quantum dots until they hybridize. This double quantum dot is hosted along the suspended carbon nanotube and localized such that it couples strongly to a high mechanical quality factor vibrational mode.
Secondly, the strong coupling between the emergent eTLS and the CNT mechanical mode enables a tunable and strong anharmonicity in the mechanical restoring potential. This anharmonicity makes it possible to use the system as a qubit, which will be realized by integrating the nano-electromechanical (NEMS) device with a superconducting microwave cavity. This allows for the mechanical qubit to be coherently addressed and sensitively read-out using the state-dependent frequency shift imparted by the qubit on the superconducting cavity.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware quantum computers
- engineering and technology nanotechnology nanoelectromechanical systems
- natural sciences physical sciences electromagnetism and electronics superconductivity
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
08860 Castelldefels
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.