Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Generalised Tree Automata, Monadic Second Order Logic and Transfer Principles in Combinatorial Limits

Descripción del proyecto

Métodos nuevos para preguntas sin resolver fundamentales en matemáticas e informática

La lógica de predicados monádicos de segundo orden es un tipo de lógica matemática de gran importancia para expresar las especificaciones formales de las propiedades de los grafos, así como para la teoría de autómatas, que describe máquinas autopropulsadas, tanto abstractas como reales. Durante el último medio siglo, los científicos han logrado numerosos avances en la teoría de predicados monádicos de segundo orden, pero aún quedan preguntas sin resolver fundamentales. El objetivo del proyecto FINTOINF, que cuenta con el apoyo de las Acciones Marie Skłodowska-Curie, es abordar dos de estas preguntas que, a pesar de los múltiples trabajos e investigaciones, aún siguen sin resolver, a saber: la conjetura de Shelah, sobre la teoría del orden de predicados monádicos, y los límites combinatorios contables.

Objetivo

The project will concentrate on two main directions (MD), which are connected through them both relying on Monadic Second Order (MSO) and its variants. (MD 1) Shelah's conjecture. In his celebrated 1975 paper Shelah proved that the monadic second order theory (MSO) of the real order is undecidable. He conjectured in his Conjecture 7B that Conjecture: MSO of the real order where the second order quantifier ranges only over Borel sets, is decidable. In spite of important efforts on this question in both mathematics and computer science community, the conjecture is still open. Many strategies, including the one suggested by Shelah in his paper (to use Borel determinacy) have been tried. We propose to study this question using the recent methods of the generalised descriptive set theory and the generalised automata that we intend to develop. This is novel and might lead to important advances and the solution. (MD2) Countable combinatorial limits. Since the work of Lovasz and others in his group around 2006, a new area of discrete mathematics emerged: the combinatorial limits. This fast growing area aroused much interest and found many applications Its first development was that of a graphon, which is an uncountable limit of a sequence of finite graphs, but there have been several others. It is always important to understand the transfer properties of statements between the sequence forming the limit and the limit itself. The question has been considered through ultrapowers and through topology and Stone's pairings. None suffices for the transfer of MSO sentence. We propose to study that transfer through the novel notion of a countable model where the notion of satisfaction has been changed so that the countable model reflects the structure of the sequence of finite models that were used to obtain the uncountable combinatorial limit. In this sense we obtain a countable combinatorial limit which we study using the methods of finite model theory.

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) H2020-MSCA-IF-2020

Ver todos los proyectos financiados en el marco de esta convocatoria

Coordinador

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 196 707,84
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

€ 196 707,84
Mi folleto 0 0