Project description
A stem cell model for neurodegenerative conditions
Spinocerebellar ataxias (SCA) constitute a group of rare disorders that progressively lead to loss of movement and are incurable. Determining their genetic aetiology has proved challenging as there are no available disease models. The EU-funded PEDIATAX project proposes to generate human induced pluripotent stem cells (hiPSC) from SCA patients as a model for studying the disease. Research will focus on key factors implicated in the development of Purkinje cells known to play a role in the pathophysiology of SCA. Results will help determine SCA disease mechanisms and pave the way for the discovery of novel treatment targets.
Objective
The proposed Fellowship unites a recently established patient cohort from Northern Finland with the extensive expertise of the host laboratory in investigating cerebellar disease to study spinocerebellar ataxias (SCAs), a heterogeneous group of incurable brain diseases defined by ataxia, or a loss of motor coordination. To date, genome wide analysis studies have associated >40 genes with driving SCAs. The vast clinical and genetic heterogeneity of the SCAs poses a significant challenge and as a result, no treatments are available for patients with SCA. Therefore, the need for novel treatment options or, at the minimum, suitable disease models, is urgent. The Fellowship aims to create disease-relevant cellular models of a subgroup of SCA using human induced pluripotent stem cells (hiPSC). These hiPSC lines have been derived from patients diagnosed with one of four SCAs (types 14, 29, 41 or 44), which are genetically distinct but may share common molecular disease mechanisms involving the mGluR1/IP3R1/TRPC3 signalling pathway. The project focuses on the IP3R1 receptor which regulates the development of Purkinje cells (PCs), the sole output neurons of the cerebellar cortex, and represents a convergent point in the pathomechanism of several ataxia disorders. To identify key disease mechanisms in this subgroup of SCAs, the hiPSCs will be differentiated into monolayer PCs and cutting-edge cerebellar organoids, which more fully recapitulate the cellular organisation of the cerebellum. The disease phenotypes will then be characterised using a combination of methods in biochemistry, molecular biology, visualisation and transcriptomics. Finally, we will adapt the differentiation protocol to a 96-well format to enable high-throughput drug screening. Ultimately, the proposed Fellowship aims to be the first study in Europe to use cutting-edge hiPSC differentiation protocols to interrogate disease mechanisms in SCA and set the stage for the discovery of novel therapeutic options.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences biochemistry
- medical and health sciences medical biotechnology cells technologies stem cells
- natural sciences biological sciences genetics genomes
- natural sciences biological sciences molecular biology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
OX1 2JD Oxford
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.