Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Electrochemical-mediated site-selective halogenation of phenol as a platform for accessing poly-substituted arenes.

Project description

Enhancing selectivity in phenol halogenation reactions

Phenols react with halogens, such as fluorine, chlorine and bromine, to yield mono-, di- or tri-substituted products. Funded by the Marie Skłodowska-Curie Actions programme, the ElectroPheX project aims to improve site selectivity in phenol halogenation reactions by using electrochemical methods. The interdisciplinary project will probe the ability of these methods to enhance both reaction selectivity and reactivity, focusing on the redox properties of catalysts, compounds, complexes and substrates, generating open-shell species and adjusting the oxidation state of metals.

Objective

ElectroPheX aims to develop electrochemically-mediated methods for the site-selective halogenation of phenols. Electrochemistry will be the main feature of this project as it can be an efficient way to access and manipulate reactive intermediates.
The project will span disciplines (interdisciplinarity) and aims to study electrochemistry’s ability to act as an enhancement tool for both selectivity and reactivity. Electrochemistry will help us to: (1) help us study the redox properties of catalysts, compounds, complexes and substrates (find redox potentials etc.); (2) to generate open-shell species; and, (3) to adjust the oxidation state of metals.
WP1-ORTHO focuses on (1) the design and synthesis of a series of compounds that contain N-halogen bond and they are capable of facilitating the ortho-halogenation of phenols upon anodic oxidation, (2) the study of intermolecular interactions and how the electrochemical generation of the corresponding radical-cation of N-halogen bond will alter/enhance the strength of the former.
WP2-META aims at the development of an electrochemically-mediated methodology for the meta-halogenation of phenols. Early transition metals (Mn, Co) will be used in order to facilitate the desired transformation. Electrochemistry will orchestrate the whole procedure giving access to adjacent oxidation states of metallic centers.
WP3-PARA targets para-halogenation of phenols mediated by a novel catalyst that mimics a main feature of photosystem II leading to a proton-coupled electron transfer (PCET) protocol for the transformation.
In WP4 the acquired knowledge will be translated to complex phenolic compounds in order to achieve a late-stage functionalization. SAR libraries, PET radiotracer, Also, the synthesis of highly site-selective halogenation of phenols can provide valuable intermediates for the preparation of poly-substituted arenes with a well-defined relationship between their substituent via cross-coupling reactions.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2020

See all projects funded under this call

Coordinator

MAX PLANCK INSTITUT FUER KOHLENFORSCHUNG
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 246 669,12
Address
KAISER WILHELM PLATZ 1
45470 Muelheim An Der Ruhr
Germany

See on map

Region
Nordrhein-Westfalen Düsseldorf Mülheim an der Ruhr
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 246 669,12

Partners (1)

My booklet 0 0