Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Regulation of DNA resection, DNA repair and genomic stability by cohesin in undifferentiated Caenorhabditis elegans germ cells

Description du projet

Comment les cellules décident-elles de la manière de réparer leur ADN?

Les cellules eucaryotes ont développé différents mécanismes pour répondre aux lésions de l’ADN et réparer ses cassures double brin. Toutefois, de nombreux détails liés à ces processus sont mal compris. Le projet coDNAres, financé par l’UE, entend apporter un éclairage sur la manière dont les cellules décident de procéder à la jonction d’extrémités non homologues, qui est susceptible de comporter des erreurs, ou à l’approche de recombinaison homologue très fidèle. Les chercheurs recourront à Caenorhabditis elegans comme système modèle pour déterminer comment les cohésines — généralement connues pour maintenir la liaison des chromatides sœurs — affectent la ségrégation des chromosomes et la réparation de l’ADN. Les résultats contribueront à expliquer le rôle des cohésines dans le maintien de la stabilité génomique.

Objectif

DNA double-strand breaks (DSBs) are the most hazardous type of DNA damage threatening genomic stability. Thus, eukaryotes developed different mechanisms of DNA damage response and DNA repair pathways which are highly conserved, but not fully understood. To keep a control between error-prone (Non-Homologous End-Joining, NHEJ) and high-fidelity (Homologous Recombination, HR) mechanisms of DSB repair is essential for cell fitness, mainly exerted at the level of licensing HR by the initial step of the pathway known as DNA end resection. Therefore, a full study of this step is essential to understand genetic diseases, as cancer, with a high potential to direct future therapeutic strategies.
Cohesin complexes are high conserved factors with several roles in preventing genome instability. Cohesin are a tripartite structure ring-like where only the kleisin subunit differ, the meiosis-specific Rec8 kleisin substitutes its mitotic counterpart Rad21/Scc1. It has been described roles for cohesin in chromosome segregation and DNA repair, but as short, all based in providing close proximity of sister chromatids. But little it’s known about an active function in DNA repair further tethering DNA molecules, e. g. participating in the decision of NHEJ/HR pathway, mediating early DNA resection, or targeting other repair proteins to damage sites regulating the DNA damage response, all aims of this proposal.
We will combine the expertise of the applicant in cohesin in nematodes and the host laboratory in DNA repair to shed light and compare the active contribution in DNA repair of the SCC-1- and REC-8-cohesin complexes. The use of Caenorhabditis elegans as model system will provide a portal to the study of systemic DNA damage response mechanisms in a tissue- specific way, here the mitotically proliferating undifferentiated germ cells, of great interest for the host lab.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Coordinateur

UNIVERSIDAD DE SEVILLA
Contribution nette de l'UE
€ 160 932,48
Coût total
€ 160 932,48