Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Friends or foes? The role of Biofilm microbiomes in industrial anaerobic membrane bioreactors to MAXimise bioenergy production

Project description

Study reveals how biofilm formation could enhance the performance of anaerobic membrane bioreactors

Industrial wastewater with high concentrations of organic matter is a valuable energy source if treated anaerobically. Anaerobic digestion membrane bioreactors offer great potential for treating such wastewater streams and producing high-quality effluent. Moreover, the methane-rich biogas produced can be used as a renewable source of power or heat. Funded by the Marie Skłodowska-Curie Actions programme, the BioMAX project will systematically study the identity, dynamics and ecophysiology of planktonic and biofilm microbiomes that are found on these bioreactors. Project findings could reveal how microbial biofilms could improve the performance, robustness and economic feasibility of anaerobic digestion membrane bioreactors.

Objective

Transforming the European Union into a competitive low-carbon economy by 2050 requires the industry sector to continue implementing energy-efficient processes, especially for the valorisation of biodegradable waste and wastewater. Anaerobic digestion membrane bioreactors (AnMBR) is an emerging technology combining the production of methane-rich bioenergy and high-quality effluents free of particles, colloids and pathogens. However, the presence of biocidal or inhibitory compounds found in many industrial wastewaters hinders the implementation of AnMBR associated to low process efficiencies and instability. Additionally, the adhesion of particles and formation microbial biofilms into the membrane surface results in increased operational energy requirements. Biofilm formation may be exacerbated when treating industrial wastewaters containing high concentrations of inhibitory compounds since biofilm formation is a widespread microbial survival strategy to thrive under unfavourable conditions. However, are biofilms friend or foe? A controlled biofilm formation may be beneficial to improve AnMBR robustness and methane yields since the protection given by the biofilm structure allows microorganisms to function in harsher conditions. Understanding the interaction between biofilm formation and functionality in anaerobic biotechnologies is key for the success of AnMBR technology and the valorisation of heavily polluted industrial wastewaters. To this aim, I will systematically study the identity, dynamics and ecophysiology of planktonic and biofilm microbiomes occurring in AnMBR treating pharmaceutical wastewater. Harnessing this knowledge will allow the quantification of the role and potential of microbial biofilms to improve AnMBR performance, robustness and economic feasibility. The experience gained from combining microbial and engineering approaches will lay the foundations to develop and improve biofilm management strategies for a successful AnMBR implementation.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2020

See all projects funded under this call

Coordinator

UNIVERSITAT DE BARCELONA
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 172 932,48
Address
GRAN VIA DE LES CORTS CATALANES 585
08007 BARCELONA
Spain

See on map

Region
Este Cataluña Barcelona
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 172 932,48
My booklet 0 0