Projektbeschreibung
Es werde Licht: Fotodegradation in vielversprechenden Solarzellen reduzieren
Die Senkung von Kosten und die Steigerung der Effizienz bilden seit Jahrzehnten die Grundpfeiler der Solarzellenforschung. Perowskit-Solarzellen eroberten die Welt daher dank ihrer ausgesprochen hohen Effizienz im Sturm. Inzwischen steht mit hybriden Perowskit-Solarzellen eine vielversprechende Möglichkeit zur Verfügung, den globalen Wünschen und Anforderungen im Hinblick auf Kosten und Effizienz gerecht zu werden. Doch noch stellt die Fotodegradation hierbei eine Hürde dar. Um ein rationales Design zu ermöglichen, das diese Hürde überwinden kann, sind bessere Methoden zur In-situ-Charakterisierung der Fotodegradation gefragt. Das EU-finanzierte Projekt iSLIP-NMR entwickelt derzeit ein Verfahren, das neue Erkenntnisse über die Mechanismen der Fotodegradation liefern soll und auf der Kernspinresonanzspektroskopie basieren wird – einer leistungsstarken Charakterisierungsmethode, die mit den in Krankenhäusern verwendeten MRT-Scannern verwandt ist. Die Arbeit des Projektes könnte den Weg zur Entwicklung von Solarzellen ebnen, die dem Zahn der Zeit – und des Lichtes – standhalten.
Ziel
Widespread adoption of photovoltaics for clean, plentiful and renewable energy requires cheap, efficient and long-lasting solar cells; hybrid perovskite solar cells are promising candidates but suffer from light-induced degradation under operational conditions. Chemical understanding of the photodegradation processes is required to develop stable materials, but is challenging to obtain with existing techniques. Here we propose to study perovskite degradation under in situ light irradiation using high-resolution solid-state NMR. Solid-state NMR is an atomic-scale, element-specific probe of local structure which has recently been shown to provide important information on perovskite systems, however new methodology is required to perform in situ light irradiation. Significantly, many photodefects will be present at low concentrations and/or localised at surfaces; in order to observe these by NMR, in situ light irradiation will be combined with dynamic nuclear polarisation (DNP), whereby the greater polarisation of unpaired electrons boosts the NMR signal. The project is split into three parts: (1) observation of major perovskite photodegradation products under in situ light irradiation that do not require additional sensitivity; (2) adaptation of DNP NMR to perovskites to observe surface passivating species; and (3) combined DNP-enhanced, in situ light-irradiated NMR to observe minor and/or surface photodefects. All three parts represent innovative methodological advances and will provide key chemical information on perovskite structures and degradation processes to guide future development of stable solar cells. The combination of myself and the Emsley lab is ideal to perform this project, through which I will develop the advanced technical and non-technical research skills required for the project to be succesful. The fellowship will expand my international network and result in wide-reaching research output, which will establish me as an independent researcher.
Wissenschaftliches Gebiet
Schlüsselbegriffe
Programm/Programme
Thema/Themen
Aufforderung zur Vorschlagseinreichung
Andere Projekte für diesen Aufruf anzeigenFinanzierungsplan
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)Koordinator
1015 Lausanne
Schweiz