Project description
Innovative mathematical tools will ensure simplifications do not complicate matters
In this new era of Big Data, computational methods must accommodate increasingly complex data sets and analyses while maintaining the appropriate balance between computational load and accuracy. Approximate inference techniques are a way to speed up the learning process in machine learning applications. However, the ability to quantify the error associated with such approximations is essential for valid use. With the support of the Marie Skłodowska-Curie Actions programme, the Stein-ML project is developing tools that will enable scientists to do just that for approximations in machine learning and statistics.
Objective
The project aims to develop quality measures for approximations in machine learning and statistics, using tools of probability and functional analysis, such as Stein's method and functional inequalities. Approximate inference techniques have been used in the recent years as a way to speed up the learning process, which is particularly important in the era of big data. It is, however, necessary for researchers to be able to measure the error of the associated approximations. Indeed, wrong variance or mean estimates in applications related, for instance, to modelling infectious diseases, may have highly negative outcomes. In this project, I will concentrate on three specific aspects of this problem. I will firstly propose tools for measuring the quality of posterior approximations in Gaussian Process inference. In order to do this, I will use the theory of Stein discrepancies which has already been successfully applied, in the context of Bayesian inference, to finite-dimensional distributions. I will combine it with the recent developments in probability theory related to Stein's method for infinite-dimensional measures. Secondly, I will construct a tool for a simultaneous study of the rate of convergence and the output quality of MCMC schemes based on discretising diffusion processes. Both those objects may be analysed using the infinitesimal generator of the underlying diffusion. Indeed, for the former we may apply the associated log-Sobolev or Poincare inequalities and, for the latter, utilise the associated Stein operator. The resulting tool will help users choose (or construct) an algorithm which is simultaneously fast and robust. Thirdly, I will construct a Gaussian-Process goodness-of-fit test, allowing users to test whether the given data come from a marginal of a particular GP. In order to do this, I will use infinite-dimensional Stein’s method together with techniques used recently to construct kernel goodness-of-fit tests based on Stein discrepancies.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences data science big data
- natural sciences mathematics applied mathematics statistics and probability bayesian statistics
- natural sciences computer and information sciences artificial intelligence machine learning
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
4365 ESCH-SUR-ALZETTE
Luxembourg
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.