Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Stein’s method and functional inequalities in machine learning

Descrizione del progetto

Strumenti matematici innovativi garantiranno che le semplificazioni non complichino le cose

Nella nuova era dei megadati, i metodi di calcolo devono adattarsi a insiemi di dati e analisi sempre più complessi, mantenendo il giusto equilibrio tra carico computazionale e precisione. Le tecniche di inferenza approssimata sono un modo per accelerare il processo di apprendimento nelle applicazioni di apprendimento automatico. Tuttavia, la capacità di quantificare l’errore associato a tali approssimazioni è essenziale per un uso valido. Con il sostegno del programma di azioni Marie Skłodowska-Curie, il progetto Stein-ML sta sviluppando strumenti che consentiranno agli scienziati di fare proprio questo per le approssimazioni nell’apprendimento automatico e nella statistica.

Obiettivo

The project aims to develop quality measures for approximations in machine learning and statistics, using tools of probability and functional analysis, such as Stein's method and functional inequalities. Approximate inference techniques have been used in the recent years as a way to speed up the learning process, which is particularly important in the era of big data. It is, however, necessary for researchers to be able to measure the error of the associated approximations. Indeed, wrong variance or mean estimates in applications related, for instance, to modelling infectious diseases, may have highly negative outcomes. In this project, I will concentrate on three specific aspects of this problem. I will firstly propose tools for measuring the quality of posterior approximations in Gaussian Process inference. In order to do this, I will use the theory of Stein discrepancies which has already been successfully applied, in the context of Bayesian inference, to finite-dimensional distributions. I will combine it with the recent developments in probability theory related to Stein's method for infinite-dimensional measures. Secondly, I will construct a tool for a simultaneous study of the rate of convergence and the output quality of MCMC schemes based on discretising diffusion processes. Both those objects may be analysed using the infinitesimal generator of the underlying diffusion. Indeed, for the former we may apply the associated log-Sobolev or Poincare inequalities and, for the latter, utilise the associated Stein operator. The resulting tool will help users choose (or construct) an algorithm which is simultaneously fast and robust. Thirdly, I will construct a Gaussian-Process goodness-of-fit test, allowing users to test whether the given data come from a marginal of a particular GP. In order to do this, I will use infinite-dimensional Stein’s method together with techniques used recently to construct kernel goodness-of-fit tests based on Stein discrepancies.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) H2020-MSCA-IF-2020

Vedi tutti i progetti finanziati nell’ambito del bando

Coordinatore

UNIVERSITE DU LUXEMBOURG
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 186 451,20
Indirizzo
2 PLACE DE L'UNIVERSITE
4365 ESCH-SUR-ALZETTE
Lussemburgo

Mostra sulla mappa

Regione
Luxembourg Luxembourg Luxembourg
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 186 451,20

Partner (1)

Il mio fascicolo 0 0