Opis projektu
Innowacyjne narzędzia matematyczne zapewnią, że uproszczenia niczego nie skomplikują
W nowej erze dużych zbiorów danych metody obliczeniowe muszą radzić sobie z coraz bardziej złożonymi zestawami danych i analizami, zachowując przy tym równowagę pomiędzy obciążeniem obliczeniowym a dokładnością. Metody wnioskowania przybliżonego są jednym ze sposobów na przyspieszenie procesu uczenia się w ramach uczenia maszynowego. Z drugiej jednak strony możliwość obliczenia błędu wynikającego z takich przybliżeń ma zasadnicze znaczenie dla bezproblemowego użytkowania. Dzięki wsparciu z działania „Maria Skłodowska-Curie” twórcy projektu Stein-ML opracowują narzędzia, które umożliwią naukowcom rozwiązanie tego problemu w przypadku posługiwania się przybliżeniami w uczeniu maszynowym i statystyce.
Cel
The project aims to develop quality measures for approximations in machine learning and statistics, using tools of probability and functional analysis, such as Stein's method and functional inequalities. Approximate inference techniques have been used in the recent years as a way to speed up the learning process, which is particularly important in the era of big data. It is, however, necessary for researchers to be able to measure the error of the associated approximations. Indeed, wrong variance or mean estimates in applications related, for instance, to modelling infectious diseases, may have highly negative outcomes. In this project, I will concentrate on three specific aspects of this problem. I will firstly propose tools for measuring the quality of posterior approximations in Gaussian Process inference. In order to do this, I will use the theory of Stein discrepancies which has already been successfully applied, in the context of Bayesian inference, to finite-dimensional distributions. I will combine it with the recent developments in probability theory related to Stein's method for infinite-dimensional measures. Secondly, I will construct a tool for a simultaneous study of the rate of convergence and the output quality of MCMC schemes based on discretising diffusion processes. Both those objects may be analysed using the infinitesimal generator of the underlying diffusion. Indeed, for the former we may apply the associated log-Sobolev or Poincare inequalities and, for the latter, utilise the associated Stein operator. The resulting tool will help users choose (or construct) an algorithm which is simultaneously fast and robust. Thirdly, I will construct a Gaussian-Process goodness-of-fit test, allowing users to test whether the given data come from a marginal of a particular GP. In order to do this, I will use infinite-dimensional Stein’s method together with techniques used recently to construct kernel goodness-of-fit tests based on Stein discrepancies.
Dziedzina nauki (EuroSciVoc)
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
- nauki przyrodnicze informatyka nauka o danych duże zbiory danych
- nauki przyrodnicze matematyka matematyka stosowana statystyka i rachunek prawdopodobieństwa statystyka bayesowska
- nauki przyrodnicze informatyka sztuczna inteligencja uczenie maszynowe
Aby użyć tej funkcji, musisz się zalogować lub zarejestrować
Przepraszamy… podczas wykonywania operacji wystąpił nieoczekiwany błąd.
Wymagane uwierzytelnienie. Powodem może być wygaśnięcie sesji.
Dziękujemy za przesłanie opinii. Wkrótce otrzymasz wiadomość e-mail z potwierdzeniem zgłoszenia. W przypadku wybrania opcji otrzymywania powiadomień o statusie zgłoszenia, skontaktujemy się również gdy status ulegnie zmianie.
Słowa kluczowe
Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
Program(-y)
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
GŁÓWNY PROGRAM
Wyświetl wszystkie projekty finansowane w ramach tego programu -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Wyświetl wszystkie projekty finansowane w ramach tego programu
Temat(-y)
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
System finansowania
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania
Zaproszenie do składania wniosków
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
(odnośnik otworzy się w nowym oknie) H2020-MSCA-IF-2020
Wyświetl wszystkie projekty finansowane w ramach tego zaproszeniaKoordynator
Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.
4365 ESCH-SUR-ALZETTE
Luksemburg
Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.