Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Oxidative stress and platelet hyperactivity: the role of NADPH oxidases in haemostasis regulation in health and diabetes.

Project description

Dissecting the molecular mechanism of thrombosis in diabetes

Type 2 diabetes (T2D) patients have a higher risk of developing cardiovascular disease, owing to the hyperactivity of platelets that lead to thrombosis. Researchers of the EU-funded POSTA project are working on NADPH oxidases (NOXs), enzymes that produce reactive oxygen and are implicated in various physiological processes. Recent evidence indicates that NOXs also activate platelets. Therefore, POSTA proposes to investigate the molecular mechanism by which NOX enzymes cause vascular complication in T2D. Apart from fundamental knowledge on platelet activation, project results may lead to novel interventions against T2D.

Objective

Platelets are circulating blood cells that help to arrest of bleeding (i.e. haemostasis) and promote the repair of blood vessels following injury. In type 2 diabetes mellitus (T2DM), platelets are hyperactive and their uncontrolled activation leads to the unwanted occlusion of blood vessels (i.e. thrombosis). Thrombosis is the main cause of mortality for T2DM patients, who display significantly higher risk of cardiovascular disease than the rest of the population. Currently, 70% of T2DM patients succumb to cardiovascular diseases.
I have been working on pro-oxidant enzymes called NADPH oxidases (NOXs), which are responsible for oxidative stress and activation of platelets. I have shown that the enzymatic activity of NOXs generates oxidant molecules (i.e. free radicals), which in turn are responsible for platelet activation. In preparation to this application, I have generated data showing that platelets from T2DM patients contain higher levels of the NOX1 isoform. This enzyme is responsible for oxidative stress and hyperactivity of platelets from T2DM platelets compared to healthy controls.
In this project, I aim to understand the molecular mechanisms underlying platelet regulation by NOXs and the contribution of NOX1 to platelet hyperactivity in T2DM. I will use human blood from T2DM patients and murine models of T2DM. In addition to clarifying the role of NOX1 in the vascular complications of T2DM, I will test whether NOX1 inhibitors synthesised in my laboratory can protect the health of the vascular system in this disease.
Taken together, this project will markedly advance our understanding of how platelets are regulated and will generate novel information on the link between cardiovascular risk and T2DM, which may result in a substantial improvement of the clinical management of this disease.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2020

See all projects funded under this call

Coordinator

UNIVERSITAETSKLINIKUM HAMBURG-EPPENDORF
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 162 806,40
Address
Martinistrasse 52
20251 Hamburg
Germany

See on map

Region
Hamburg Hamburg Hamburg
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 162 806,40
My booklet 0 0