Project description
Computational platform for characterisation of gene regulation at the single-cell level
The development of single-cell technologies has enabled the characterisation of cell types and underlying patterns of the developmental processes at higher resolution, while the integration of data from different omics analyses yields a more differentiated picture of mechanistic connections. Funded by the Marie Skłodowska-Curie Actions programme, the GReCS project aims to develop a computational method that generates insights into gene regulation at the single-cell level. The approach will integrate transcriptomics and open chromatin data to filter prior information about candidate interactions and predict cell-specific gene regulatory networks using machine learning. The developed computational toolkit will be available to the community to expand the characterisation of gene regulation by combining different types of data.
Objective
The advent of single cell technologies has enabled the characterization of cell types and developmental processes. Observations from different cells allow one to identify underlying patterns at higher resolution than convoluted bulk data, and integration of different omics data can yield a more differentiated picture of mechanistic connections. In this proposal, Gene REgulatory Cell States (GReCS) from multi-modal data, I plan to develop a computational method that combines these aspects to generate insights into gene regulation at the level of single cells.
Measurements of chromatin accessibility in single cells are becoming increasingly common. The method I propose to develop combines sc/sn-ATAC- and scRNA-sequencing data to characterize gene regulation. My approach will integrate and use transcriptomics and open chromatin data to filter comprehensive prior information about candidate interactions and predict cell-specific gene regulatory network versions using machine learning, while sparse single cell measurements are imputed using local cell similarities. In this way, rare measurements across cell types and a larger condition space for network inference can be exploited, using the natural potential of chromatin accessibility data as a filter to map interactions into a cell-specific context.
A distinguishing feature of the proposed method is the characterization of local gene regulatory states, which allows the observation of continuous changes throughout a cell-cell similarity embedding. This will be useful to examine changes during cell differentiation and along gradients in spatial reconstructions, for example of embryonic development. The developed methods will be made available to the community as a computational toolkit to improve the characterization of gene regulation by combining different types of data.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences developmental biology
- natural sciences computer and information sciences computational science
- natural sciences computer and information sciences artificial intelligence machine learning
- medical and health sciences medical biotechnology cells technologies
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
CB10 1SA SAFFRON WALDEN
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.