Project description
Impact of microplastics on soils
Microplastic pollution of the marine environment has received considerable attention, but microplastics also threaten the soil environment. The underlying mechanisms and wider impacts are poorly understood. The EU-funded TRAMPAS project will fill this knowledge gap by exploring whether microplastics increase the hydrophobicity of the soil pore surface, thereby increasing the movement of potentially pathogenic microorganisms. The initiative will address two challenges of societal importance: microplastic pollution and pathogen fate in the environment. Researchers will first quantify how climatic stresses and soil properties interact with microplastics to induce hydrophobicity and conduct leaching experiments using synthesised DNA. Scientists will then measure soil pore scale processes using microfluidics and explore the formation of microbial colonised microplastics (the plastisphere).
Objective
Microplastic pollution has received considerable attention for the marine environment, but hidden out of sight are microplastics in soil. In Europe alone, there are likely more microplastics in soil than in all the world’s oceans. Microplastics can adversely affect soils, but the underlying mechanisms and wider impacts are poorly understood. A significant impact could be increased hydrophobicity of the soil pore surface, which can increase the movement of potentially pathogenic microorganisms. I found that the concentration of microplastics and soil temperature increase the soil-water contact angle, a measure of hydrophobicity. This project will explore how microplastics influence soil through the development of hydrophobicity and the impacts to bacteria and virus transport and retention. It builds on my recent research that was the first to link the development of soil hydrophobicity with increased leaching of bacteria. Two challenges of societal importance are addressed: (1) microplastic pollution and (2) pathogen fate in the environment.
I will bring together a range of approaches, starting first with quantifying how climatic stresses and soil properties interact with microplastics to induce hydrophobicity. This will be followed by leaching experiments, where microbial retention and leaching will be tracked with a novel approach using synthesised DNA. Soil pore scale processes will be measured using microfluidics, where the spread and retention of microbes and water can be visualised directly under highly controlled conditions. Finally, I will study microplastic contaminated soil, exploring the formation of microbial colonised microplastics – the ‘plastisphere’.
Working with a strong multidisciplinary team I will gain excellent training in state-of-the-art analysis approaches. By using highly visual approaches in my research, such as microfluidics, I will be able to demonstrate its impact to a range of audiences, from the public, through policy, to scientists.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences classical mechanics fluid mechanics microfluidics
- natural sciences biological sciences microbiology bacteriology
- natural sciences biological sciences genetics DNA
- natural sciences earth and related environmental sciences environmental sciences pollution
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
AB24 3FX Aberdeen
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.