Project description
Keeping peptides in line could enable powerful new therapeutics
Proteins are ubiquitous in the human body, serving a huge variety of critical functions. These include short- and long-distance signalling, transport, storage, and structural support. These large, complex molecules are made up of much smaller units called peptides. Harnessing these simpler yet powerful natural subunits holds great promise for therapeutics. However, their benefits over small molecule-based drugs are difficult to exploit given their flexible and changing conformations in solution and their short half-lives. This EU-funded ASPIRATION project aims to develop template-based strategies for crystallising peptides for increased product stability, bioavailability and improvements to manufacturability.
Objective
Peptides are recognised for being highly selective and efficacious signalling molecules that bind to the specific cell surface receptors or ion channel where they trigger intracellular effects. They are relatively safe compared to small molecule-based drugs and are well tolerated in the human body. Peptide therapeutics exhibits an excellent opportunity in the pharmaceutical industry as their target specificity is much better than small molecules drugs, while the production cost and complexity are lower than protein-based biopharmaceuticals. In the past decade, peptide therapeutics have gained a wide range of applications in medicine and biotechnology. Currently, there are more than 60 US Food and Drug Administration (FDA) approved peptides medicine on the market and this is expected to grow significantly with 140 peptide drugs in the clinical trials and more than 500 peptide drugs in pre-clinical phase. Despite several advantages of peptide drugs, poor physical and chemical stability, and a short circulating plasma half-life are major issues related to the peptide drugs. Furthermore, these issues could be easily resolved by determining and studying the crystal forms of the peptides. Crystalline peptide not only improves the physical and chemical stability of the peptides but also improves processability and reduces the production cost. This action aims to introduce a peptide crystallisation method based on a soft template strategy where peptide building blocks i.e. amino acids or other short peptides will act as templates for the crystallisation of peptide drugs. This will be a low cost and scalable approach for crystallising peptides and gaining insight into the structural determination of peptides. Also, an in-depth understanding of the thermodynamic and kinetic processes that drive the crystallization for a specific peptide is required before the critical process parameters can be altered to achieve control over nucleation and crystal growth.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology materials engineering crystals
- medical and health sciences basic medicine pharmacology and pharmacy pharmaceutical drugs
- natural sciences biological sciences biochemistry biomolecules
- natural sciences chemical sciences organic chemistry amines
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
SW7 2AZ LONDON
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.