Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Diophantine Geometry: towards the ultimate Bogomolov conjecture

Project description

Extending the Bogomolov conjecture beyond abelian varieties

Funded by the Marie Skłodowska-Curie Actions programme, the DiophGeo project plans to extend the use of the Bogomolov conjecture beyond abelian varieties. Research over the past decade has indicated that this could be possible. For example, there are proven relative analogues of the Manin-Mumford conjecture in various families of abelian varieties and a relative analogue of the Bogomolov conjecture for sections in a fibred product of elliptic families. Ultimately, research has proven a dynamical Bogomolov conjecture for split rational maps. The project will use an analogue of the equidistribution conjecture in families of abelian varieties over a base curve.

Objective

"This project proposes research with a view towards extensions of the Bogomolov conjecture beyond the original setting of abelian varieties. In the past decade, there have been some indications that this may be possible: (a) Masser and Zannier have proven ""relative'' analogues of the Manin-Mumford conjecture in various families of abelian varieties, (b) DeMarco and Mavraki have shown a ""relative'' analogue of the Bogomolov conjecture for sections in a fibered product of elliptic families, and (c) Ghioca, Nguyen, and Ye have proven a ""dynamical'' Bogomolov conjecture for split rational maps.

A prominent tool in almost all proofs of the Bogomolov conjecture are equidistribution techniques (i.e. Yuan's equidistribution theorem). However, there are two problems with this approach when it comes to ""relative'' generalizations.

First, the Néron-Tate local height in families of abelian varieties exhibits b-singularities nearby degenerate fibers, preventing a direct use of Yuan's theorem if the family has degenerate fibers. Recently, I have overcome these problems and proven a satisfactory analogue of the equidistribution conjecture in families of abelian varieties over a base curve. Part of the research proposed here is to generalize and exploit this result further.

Second, equidistribution techniques usually fall short of ""relative'' Bogomolov-type results -- in stark contrast to the case of abelian varieties. Similar problems arise in the ""dynamical"" setting, indicating a profound conceptional obstacle. For this reason, it is proposed here to adapt a method of David and Philippon, who gave an equidistribution-free direct proof of the Bogomolov conjecture for abelian varieties, to the relative setting. Such a method, if successful, should shed some light on an ""ultimate'' Bogomolov conjecture encompassing virtually all the Bogomolov-type results known up to the present day."

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.

You need to log in or register to use this function

Coordinator

KOBENHAVNS UNIVERSITET
Net EU contribution
€ 207 312,00
Address
NORREGADE 10
1165 Kobenhavn
Denmark

See on map

Region
Danmark Hovedstaden Byen København
Activity type
Higher or Secondary Education Establishments
Links
Total cost
€ 207 312,00