Description du projet
Élargir la conjecture de Bogomolov au-delà des variétés abéliennes
Financé par le programme Actions Marie Skłodowska-Curie, le projet DiophGeo prévoit d’étendre l’utilisation de la conjecture de Bogomolov au-delà des variétés abéliennes. Les recherches menées au cours de la dernière décennie ont laissé présager que cela pourrait être possible. Ainsi, il existe des analogues relatifs prouvés de la conjecture de Manin-Mumford dans diverses familles de variétés abéliennes et un analogue relatif de la conjecture de Bogomolov pour les sections dans un produit fibré des familles elliptiques. L’étude a enfin établi une conjecture de Bogomolov dynamique pour les cartes rationnelles divisées. Le projet utilisera un analogue de la conjecture d’équidistribution dans les familles de variétés abéliennes sur une courbe de base.
Objectif
"This project proposes research with a view towards extensions of the Bogomolov conjecture beyond the original setting of abelian varieties. In the past decade, there have been some indications that this may be possible: (a) Masser and Zannier have proven ""relative'' analogues of the Manin-Mumford conjecture in various families of abelian varieties, (b) DeMarco and Mavraki have shown a ""relative'' analogue of the Bogomolov conjecture for sections in a fibered product of elliptic families, and (c) Ghioca, Nguyen, and Ye have proven a ""dynamical'' Bogomolov conjecture for split rational maps.
A prominent tool in almost all proofs of the Bogomolov conjecture are equidistribution techniques (i.e. Yuan's equidistribution theorem). However, there are two problems with this approach when it comes to ""relative'' generalizations.
First, the Néron-Tate local height in families of abelian varieties exhibits b-singularities nearby degenerate fibers, preventing a direct use of Yuan's theorem if the family has degenerate fibers. Recently, I have overcome these problems and proven a satisfactory analogue of the equidistribution conjecture in families of abelian varieties over a base curve. Part of the research proposed here is to generalize and exploit this result further.
Second, equidistribution techniques usually fall short of ""relative'' Bogomolov-type results -- in stark contrast to the case of abelian varieties. Similar problems arise in the ""dynamical"" setting, indicating a profound conceptional obstacle. For this reason, it is proposed here to adapt a method of David and Philippon, who gave an equidistribution-free direct proof of the Bogomolov conjecture for abelian varieties, to the relative setting. Such a method, if successful, should shed some light on an ""ultimate'' Bogomolov conjecture encompassing virtually all the Bogomolov-type results known up to the present day."
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Mots‑clés
Programme(s)
Régime de financement
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)Coordinateur
1165 Kobenhavn
Danemark