Projektbeschreibung
Eine Erweiterung der Bogomolow-Vermutung über abelsche Varietäten hinaus
Das im Rahmen der Marie-Skłodowska-Curie-Maßnahmen finanzierte Projekt DiophGeo plant, die Anwendbarkeit der Bogomolow-Vermutung auch über abelsche Varietäten hinaus auszuweiten. Forschungsbemühungen des letzten Jahrzehnts haben nahegelegt, dass dies möglich sein könnte. Beispielsweise wurden relative Analoga zur Manin-Mumford-Vermutung für verschiedene Familien abelscher Varietäten und ein relatives Analogon zur Bogomolow-Vermutung für Querschnitte eines Faserprodukts elliptischer Familien bewiesen. Letztendlich konnte die Forschung eine dynamische Form der Bogomolow-Vermutung für geteilte rationale Abbildungen beweisen. Das Projekt wird ein Analogon der Gleichverteilungsvermutung für Familien abelscher Varietäten über einer Basiskurve anwenden.
Ziel
                                "This project proposes research with a view towards extensions of the Bogomolov conjecture beyond the original setting of abelian varieties. In the past decade, there have been some indications that this may be possible: (a) Masser and Zannier have proven ""relative'' analogues of the Manin-Mumford conjecture in various families of abelian varieties, (b) DeMarco and Mavraki have shown a ""relative'' analogue of the Bogomolov conjecture for sections in a fibered product of elliptic families, and (c) Ghioca, Nguyen, and Ye have proven a ""dynamical'' Bogomolov conjecture for split rational maps. 
A prominent tool in almost all proofs of the Bogomolov conjecture are equidistribution techniques (i.e. Yuan's equidistribution theorem). However, there are two problems with this approach when it comes to ""relative'' generalizations. 
First, the Néron-Tate local height in families of abelian varieties exhibits b-singularities nearby degenerate fibers, preventing a direct use of Yuan's theorem if the family has degenerate fibers. Recently, I have overcome these problems and proven a satisfactory analogue of the equidistribution conjecture in families of abelian varieties over a base curve. Part of the research proposed here is to generalize and exploit this result further.
Second, equidistribution techniques usually fall short of ""relative'' Bogomolov-type results -- in stark contrast to the case of abelian varieties. Similar problems arise in the ""dynamical"" setting, indicating a profound conceptional obstacle. For this reason, it is proposed here to adapt a method of David and Philippon, who gave an equidistribution-free direct proof of the Bogomolov conjecture for abelian varieties, to the relative setting. Such a method, if successful, should shed some light on an ""ultimate'' Bogomolov conjecture encompassing virtually all the Bogomolov-type results known up to the present day."
                            
                                Wissenschaftliches Gebiet (EuroSciVoc)
                                                                                                            
                                            
                                            
                                                CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
                                                
                                            
                                        
                                                                                                
                            
                                                                                                CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen
Wir bitten um Entschuldigung ... während der Ausführung ist ein unerwarteter Fehler aufgetreten.
Sie müssen sich authentifizieren. Ihre Sitzung ist möglicherweise abgelaufen.
Vielen Dank für Ihr Feedback. Sie erhalten in Kürze eine E-Mail zur Übermittlungsbestätigung. Wenn Sie sich für eine Benachrichtigung über den Berichtsstatus entschieden haben, werden Sie auch im Falle einer Änderung des Berichtsstatus benachrichtigt.
                                Schlüsselbegriffe
                                
                                    
                                    
                                        Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
                                        
                                    
                                
                            
                            
                        Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
            Programm/Programme
            
              
              
                Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
                
              
            
          
                      Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
- 
                  H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
                                      HAUPTPROGRAMM
                                    
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen - 
                  H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
                                    
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen 
            Thema/Themen
            
              
              
                Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
                
              
            
          
                      
                  Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
            Finanzierungsplan
            
              
              
                Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
                
              
            
          
                      Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen
              Aufforderung zur Vorschlagseinreichung
                
                  
                  
                    Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
                    
                  
                
            
                          Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
(öffnet in neuem Fenster) H2020-MSCA-IF-2020
Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigenKoordinator
Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.
1165 KOBENHAVN
Dänemark
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.