Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Ironing out Fe homeostasis and ferroproteins metallation in symbiotic Rhizobia

Project description

Handling of iron in nitrogen-fixing endosymbiotic bacteria

Rhizobia-legume symbiosis is the main route for sustainable nitrogen to contribute to soil fertility. During symbiosis, legumes develop nodules hosting endosymbiotic bacteria expressing nitrogenase, a unique iron and molibdenum metalloenzyme that transforms atmospheric nitrogen into ammonia that is utilised by plants. The EU-funded IronFeRhizo project will combine biochemical and molecular biology techniques to determine how much iron is required by nitrogen-fixing bacteria, which genes are required in its transport into the cell, and how much is used to metallate the nitrogenase and other metalloproteins. The techniques developed will facilitate research into mineral nutrition in other soil bacteria, how cells partition an element among different metalloproteins, and how iron homeostasis can help us optimise nitrogen fixation in rhizobia.

Objective

Rhizobia-legume symbiosis (RLS) is the principal entry pathway of sustainable N in agricultural systems. During the symbiosis, plants develop a new organ called the nodule that hosts thousands of endosymbiotic bacteria expressing the nitrogenase, the enzyme responsible to transform the atmospheric nitrogen into ammonia. The nitrogenase unique metallic cofactors (made of Fe and Mo) likely impose an extra demand of these metals to the cell, which already requires a basal amount of Fe to synthesize ‘housekeeping’ metalloproteins. However, the transport systems required by the endosymbiotic rhizobia to satisfy that increased demand remain obscure yet.
In this project, we will combine molecular biology approaches, including cell-labeling, epitope tagging, and loss-of-function genomic approaches coupled with thorough phenotyping and two analytical methods, inductively coupled plasma-mass spectrometry and X-ray absorption spectroscopy, to characterize how much iron does nitrogen-fixing bacteria need, how much is used to metallate the nitrogenase and other metalloproteins, and what genes are required to maintain the Fe homeostasis in the endosymbiotic bacteria.
The methodologies developed within this project will open new avenues for the study of mineral nutrition in other soil bacteria and will offer an insight into how cells partition an element among different metalloproteins. Furthermore, ironing out Fe homeostasis in rhizobia will allow us to maximize the nitrogen fixation capabilities of both natural and synthetic nitrogen-fixing bacteria to be used as inoculants in sustainable agriculture practices.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2020

See all projects funded under this call

Coordinator

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 224 933,76
Address
WELLINGTON SQUARE UNIVERSITY OFFICES
OX1 2JD Oxford
United Kingdom

See on map

Region
South East (England) Berkshire, Buckinghamshire and Oxfordshire Oxfordshire
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 224 933,76
My booklet 0 0