Project description
Understanding R-loop-associated telomere instability in cancer cells
Telomeres are the terminal structures of chromosomes known for their role in promoting genome integrity and preventing DNA damage. In most cells, telomeres shorten with each cell division; that is, unless telomerase is reactivated or the homology-directed repair process known as alternative lengthening of telomeres (ALT) ensues in cancer cells. The EU-funded RTeRloop project is investigating the mechanisms regulating telomeric R-loops, RNA-DNA structures that contribute to ALT activation and telomere instability. The project will identify key molecular players in telomeric R-loop metabolism and determine how these structures are regulated in cells using different telomere maintenance mechanisms. Considering that cancer cells hijack ALT or telomerase to continue dividing, project results have important clinical applications.
Objective
Telomere stability is essential to prevent tumorigenesis and cellular senescence in human cells. Telomeres are transcribed into TERRAs, which has the ability to form R-loops with the DNA template. It is known that R-loops can hamper replication fork progression leading to hyperrecombination and genome instability. Indeed, R-loops are accumulated in telomeres of cancer cells that use the Alternative Lengthening of Telomere (ALT) maintenance mechanism to gain immortalisation and in ICF syndrome cells, associated with telomere shortening and senescence.
The mammalian ATR-mediated replication stress signalling pathway and the RAD18-UBE2B ubiquitin-ligase complex involved in post-replication repair have been recently discovered as mains regulators of R-loop accumulation, suggested to act via different mechanisms. Interestingly, both pathways affect telomeres of ALT cells, where R-loops have been proposed as drivers of ALT recombination. Whether or not replication and post-replication signalling pathways have a differential role in telomeric R-loop control is not known, but it would be of key relevance to understand the role of R-loops in telomere dynamics both in normal and cancer cells. With this aim, we will investigate the molecular mechanisms that control pathological R-loop modulation at human telomeres by focussing into their accumulation during and after DNA replication and their regulation by replication and post-replication DNA damage responses. By developing new systems that allow a precise temporal control of R-loop levels and innovative single molecular approaches to detect R-loops at the replication fork, plus the use of and unbiased proteomics analysis of isolated chromatin from telomeres, I will identify new key factors and molecular mechanisms controlling telomeric R-loops in normal and cancer cells. This knowledge will help identify possible future targets in anti-cancer therapy that specifically affect cancer cells.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences biochemistry biomolecules proteins proteomics
- natural sciences biological sciences genetics DNA
- medical and health sciences clinical medicine oncology
- natural sciences biological sciences genetics genomes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
41004 Sevilla
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.