Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Sustainable Design of 3D-printed Responsive Interfaces for Electrically Monitoring Bistable (Supra)Molecular Switches: Towards 3D-printed Logic Gates

Project description

3D printing of responsive molecular electronics for intelligent 3D-printed devices

Molecular electronics in which silicon components are replaced by molecular logic gates is a very promising solution to the problem of fitting ever more transistors into smaller and smaller spaces. Extending the potential of molecules beyond simply reading output signals to transducing them would benefit tremendously from a bottom-up 3D manufacturing approach. With the support of the Marie Skłodowska-Curie Actions programme, the R3DINBOW project is developing 3D printing technology that will be used to demonstrate 3D-printed responsive interfaces able to read out the states of supramolecular switches. This building block could pave the way for the next generation of intelligent 3D-printed electronic devices.

Objective

The ability of electronic devices to act as switches makes digital information processing possible. The current silicon-based semiconductor processors are fabricated according to a top-down principle. However, the need to scale down in the size of such electronic devices has prompted the search for molecule-based information processing components (Molecular Electronics), such as switching memories, sensors and logic gates. Concretely, within the past two decades, developments in Nanotechnology have shown the capabilities of molecules to perform some of the computational logic functions - relating to the concept of logical zeros (0) and ones (1) binary code - achieved in mainstream semiconductor technology. Molecular logic gates differ from the currently used semiconductor elements by small size, multifunctional nature and variability of input and output signals. Nonetheless, the transition of logic elements from mostly optical means for reading output signals to electronic transduction tools would be beneficial for developing many novel logic elements for information processing, (bio)sensing and actuation. Accordingly, the design, construction and miniaturization of molecular electronic systems capable of performing complex logic functions is a current challenge. Herein, 3D printing technology is presented as a promising tool to open up new horizons in the field of electronic devices in general, and molecular logic gates in particular. For this goal, a sustainable bottom-up approach has been devised for the development of the next generation of “intelligent” 3D-printed electronic devices - 3D-printed responsive interfaces -, where bistable (supra)molecular switches will be electrically read out on carbon-based 3D-printed conductive substrates as the proof. Accordingly, R3DINBOW is in strong agreement with the EU’s digital strategy, while helping to achieve its target of a climate-neutral Europe by 2050 and responding to the current needs of our Society.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2020

See all projects funded under this call

Coordinator

VYSOKE UCENI TECHNICKE V BRNE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 144 980,64
Address
ANTONINSKA 548/1
602 00 BRNO STRED
Czechia

See on map

Region
Česko Jihovýchod Jihomoravský kraj
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 144 980,64
My booklet 0 0