Project description
Nano-confinement will help turn water molecules into hydrogen
Chemical reactions only occur when the reactants and catalyst can ‘find each other’ in the bulk reaction space. Confined catalysis can help them do that quickly and easily. As its name suggests, confined catalysis relies on isolating the reactants and their necessary nanoscale chemical environments from the surround. It is rapidly emerging as an effective way to fine-tune catalytic performance. The EU-funded CoCaWS project will employ confined catalysis principles in the development of novel composite 2D layered nanomaterials that will confine another active species between the layers. The targeted application is hydrogen production from water splitting. Amplifying production will support a sustainable clean energy supply to meet growing demand.
Objective
Sustainable solution for global energy crisis is firmly associated with seeking energy sources other than fossil fuel. In this respect, the production of hydrogen through water splitting (WS) has been regarded as the greenest approach to power the globe. At present, the issue of realizing active and stable material capable of catalyzing WS in all pH ranges is unsolved. CoCaWS aims at exploring new efficient catalysts for overall WS to tackle the problem of global energy crisis through ecofriendly hydrogen production. I hereby propose to study a new class of efficient catalysts based on composite two dimensional (2D) layered nanomaterials. I employ the concept of confined catalysis, catalytic activities taking place in a unique nanoscale environment partitioned from the surrounding bulk space, to ensure long term efficient production of H2 from water. The van der Waals (vdW) gaps between the layers will serve as a suitable platform to confine another active species. Through this approach, I aim at solving the most critical problems in the field such as catalytic functionality in neutral media for metals or alloys and poor basal plane activity in layered 2D materials. I will make use of the most conducive research environment in UNIVE to acquire new skill/knowledge and broaden my basic knowledge on advanced characterization techniques and data interpretations. The knowledge of physical chemistry, material science, condensed mater physics, and computational chemists will be involved to confront with the complexity of the task through smooth interaction with researchers in the Department of Molecular Sciences and Nanosystems of UNIVE. The project, up on completion, will provide a significant stepping-stone in the quest for responding the escalating demand of greenest energy source. I will make every possible effort to disseminate/communicate the outcomes of CoCaWS to broad audiences ranging from schoolchildren to researchers.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences chemical sciences catalysis
- engineering and technology nanotechnology nano-materials
- engineering and technology environmental engineering energy and fuels
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
30123 VENEZIA
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.