Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Supported Porous Nanoparticles for Functional Plasmonic Materials

Description du projet

Un contrôle précis de la dimension des pores au sein des nanoparticules permet de créer de nouveaux matériaux plasmoniques

La résonance plasmonique de surface localisée est l’oscillation collective des électrons de la bande de conduction en résonance avec les oscillations de la lumière incidente (champ électromagnétique) observée à proximité des nanoparticules, générant des propriétés optiques inédites dans la nature. Les pores des nanoparticules augmentent considérablement le rapport surface/volume et peuvent accroître cet effet pour de nouvelles fonctionnalités. Jusqu’à présent, ce potentiel s’est trouvé limité par les techniques disponibles de fabrication des nanoparticules poreuses. Avec le soutien du programme Actions Marie Skłodowska-Curie, le projet PlasmoPore développe une nouvelle approche de nanofabrication permettant un meilleur contrôle de la dimension des pores, ouvrant la voie à de nouvelles applications en catalyse et en détection de l’hydrogène.

Objectif

"Localized surface plasmon resonance (LSPR) occurring in metal nanoparticles has opened the door to the realization of fascinating novel concepts and technologies. This is possible due to the unique properties of the light-metal nanoparticles interaction mediated by LSPR, for example the efficient light absorption and scattering by metal nanoparticles at resonance, as well as enhanced electromagnetic fields in the vicinity of the nanoparticles. A particularly interesting, yet rarely explored nanoparticle feature with great potential for the creation of plasmonic nanostructures with novel functionalities is porosity, which exhibits numerous so-called ""hotspots"": regions where the local electromagnetic field is greatly enhanced with respect to the incoming field. Combined with large surface-to-volume ratios, porous metal nanoparticles offer potentials for e.g. sensing and plasmon-mediated catalysis applications. Despite these prospects, porous nanoparticles have so far been rarely exploited due to the fact that they are produced via colloidal synthesis, which introduces several limitations.
The objective of the proposed research is to establish a nanofabrication route, by combining nanolithography and wet chemical route, to produce supported array of porous plasmonic nanoparticles with excellent dimension control and utilize these nanostructures in the fields of plasmon-mediated catalysis and plasmonic hydrogen sensing. The action will combine the researcher expertise in nanofabrication, experimental plasmonics and hydrogen sensing and the supervisor and host institute experiences in wet chemistry, single-particle spectroscopy and plasmon-mediated catalysis. The successful results of this action will contribute to the development of new class of materials, that is supported porous nanoparticles, which extends the library of the functional plasmonic materials with wide applications for example in sensing and plasmon-activated catalysis."

Coordinateur

STICHTING VU
Contribution nette de l'UE
€ 187 572,48
Adresse
DE BOELELAAN 1105
1081 HV Amsterdam
Pays-Bas

Voir sur la carte

Région
West-Nederland Noord-Holland Groot-Amsterdam
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 187 572,48