Project description
Investigating gas transport in clay materials
Discrete gas flow pathways describe how a gas penetrates a liquid-saturated clay-rich material through narrow channels shaped by gas pressure. This complex phenomenon is strongly affected by small- and large-scale heterogeneities in the material. Funded by the Marie Skłodowska-Curie Actions programme, the GASCLAY project will develop a new experimental set-up to study such pathways. Using particle image velocimetry, researchers will be able for the first time to track the formation and degradation of discrete gas flow pathways as the gas is injected. Project work will lay the foundations for developing new clay-based engineered materials.
Objective
The formation of Discrete Gas Flow Pathways (DGFP) is the mechanism whereby a gas phase penetrates a liquid-saturated clay-rich material in the form of narrow channels created by the mechanical action of the gas pressure. It is a very complex phenomenon, which is strongly affected by small and larger scale heterogeneities in the material, resulting in a partly random process. DGFP occur in a range of natural and engineered processes (e.g. release of methane from ocean or lake floor sediments, stimulation of sensitive hydro-carbon reservoirs, CO2 injection and storage in subsurface reservoirs, and gas migration through clay barrier in Geological Disposal Facilities for radioactive waste). Despite its multiple environmental and economic implications, the formation, development and vanishing of DGFP networks are poorly understood on a fundamental level.
The objective of the proposal is to close this knowledge gap through a combined experimental and numerical modelling study. For this purpose, I will develop a new experimental setup to generate and visualise two-dimensional DGFP networks during gas injection tests. By using Particle Image Velocimetry, this setup will allow to track, for the first time, the formation and vanishing of DGFP as gas is injected. In addition, the setup will be simple enough to enable extensive parametric studies and probability distribution analysis, which are essential to unravel the random nature of the problem. Finally, the experimental results will be used to develop and validate a coupled hydro-pneumo-mechanical Finite Element model.
The new theoretical framework, experimental setups and numerical model will provide the basis to develop new clay-based engineered materials, to increase the feasibility of engineering projects and to improve the global warming prognosis. In that way, this project will contribute to the European knowledge-based economy and to the European Climate Action.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
2628 CN DELFT
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.