Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Low Dimensional Topology and Singularity Theory

Descripción del proyecto

Estudio de variedades topológicas de cuatro dimensiones, curvas y singularidades superficiales

El objetivo principal del proyecto LDTSing, financiado por las Acciones Marie Skłodowska-Curie, es emplear técnicas de las variedades topológicas de cuatro dimensiones suaves para estudiar las deformaciones de singularidades superficiales aisladas. En concreto, su equipo utilizará invariantes de la teoría «de calibre» y técnicas combinatorias de la teoría de retículos para suavizar singularidades superficiales racionales. Se considerará una conjetura de Kollar sobre una clase de singularidades superficiales racionales con un suavizado único. Otro objetivo es investigar las propiedades de la esfera de homología racional tridimensional, como la n-divisibilidad y la torsión.

Objetivo

The aim of the project is two-fold.
One goal is to employ techniques from smooth 4-dimensional topology in the study of deformations of isolated surface singularities. More specifically the project aims at advancing in the study of smoothings of rational surface singularities by means of gauge-theoretic invariants as well as lattice-theoretic combinatorial techniques. A conjecture of Kollar regarding a class of rational surface singularities with a unique smoothing will be considered. The conjecture has natural symplectic and topological counterparts. The plan consists in proving the topological version and investigating the extent to which this version of the problem can lead to advancements in the original conjecture.
Another primary goal is to investigate properties of the 3-dimensional rational homology sphere group, such as n-divisibility and torsion, via constructions involving rational cuspidal curves in possibly singular homology planes. In this context a first specific goal is producing examples of 3-manifolds which are either Seifert fibered spaces or obtained via Dehn surgery on an algebraic knots which are 2-divisible in the rational homology sphere group. In a similar setting it will be investigated the extent to which rational homology balls bounded by integral surgeries on torus knots can be realized algebraically.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) H2020-MSCA-IF-2020

Ver todos los proyectos financiados en el marco de esta convocatoria

Coordinador

UNIVERSITE DE LILLE
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 184 707,84
Dirección
42 RUE PAUL DUEZ
59000 Lille
Francia

Ver en el mapa

Región
Hauts-de-France Nord-Pas de Calais Nord
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

€ 184 707,84
Mi folleto 0 0