Project description
Mathematical framework for working memory networks
Human memory is a powerful mental process comprising several modules responsible for processing, learning, and recalling received stimuli. Working memory (WM) holds and processes temporary information for performing cognitive tasks. Understanding human memory functioning is central to deciphering its role in cognitive health and use in artificial intelligence (AI) developments like deep neural networks (DNN). However, the robustness of these networks when their input is perturbed is a crucial open issue. The EU-funded ReWoMeN project will develop a combined model-based and data-driven mathematical framework to understand the recall dynamics of human WM networks (ReWoMeN) for robust DNN realisation and contribute to the mechanistic understanding of the human WM.
Objective
Memory and learning are human central cognitive abilities. The importance of understanding human memory functioning is evident from its central role in our cognitive health as well as its role as the main inspiration behind developments in artificial intelligence, in particular artificial deep neural networks (DNN). Despite considerable progress in the recent years in the area of DNNs, robustness of these networks is an important open issue. In particular, noise robustness, i.e. DNNs are fragile in maintaining the correct predictions if their input is perturbed. In contrast, a healthy human’s memory system maintains performance despite perturbed inputs. This motivates us to learn from the biological neuronal networks of human memory for a more robust DNN. The human memory is composed of several modules responsible for processing, learning, and recalling the received information. Among the memory modules is the working memory (WM) which is responsible for holding and processing information in a temporary fashion and in service of higher order cognitive tasks, e.g. decision making. The short-term nature of the WM makes it a great example for designing dynamic DNNs, which are useful in safety critical applications in uncertain environments. The aim of this proposal is to build a combined model-based and data-driven mathematical framework for understanding Recall dynamics of human Working Memory Networks (ReWoMeN) for realization of a robust DNN as well as contributing to the mechanistic understanding of the human WM. ReWoMeN address three main challenges including derivation of a biologically plausible system-level model to account for the measured data of human experience of WM recalling, analysis of such a complex model for explaining and predicting WM behavior, and comparing the robustness of our WM model with a recurrent DNN in an image recognition application.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences neurobiology cognitive neuroscience
- natural sciences computer and information sciences artificial intelligence computational intelligence
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
2628 CN DELFT
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.