Project description
Extending the power of transient-absorption spectroscopy
Transient-absorption spectroscopy is a powerful tool to monitor the dynamics of photo-excited states in a sample. Despite their potential, such ultrafast nonlinear techniques typically require large-volume samples and coherent detection. Funded by the Marie Skłodowska-Curie Actions programme, the FluoTRAM project will leverage a newly developed technique for detecting the fluorescence of a sample and apply it to transient-absorption spectroscopy. The technique should help reveal additional information on the excitation dynamics in the samples. This information could prove useful in many areas, including the correlation of the excitation and emission spectra for dye probes, intramolecular charge transfer in fluorescent proteins and charge transfer and recombination in organic materials.
Objective
Fluorescence microscopy is an indispensable tool in many areas of research. In life sciences it has been perfected for biological sample imaging either by its autofluorescence or using fluorescent markers such as dyes or fluorescent proteins. It is thus possible to localize molecules in cells, obtaining wealth of information on their dynamics and environment. Despite its power, the fluorescence detection is, by its nature, limited to the information on the final, emissive state of the molecules after photoexcitation. Meanwhile, transient absorption spectroscopy enables to track the initial state of the molecules after absorption and the following excitation dynamics. However, such ultrafast nonlinear techniques typically require volume samples and coherent detection. We have recently developed a new way to measure transient absorption by detecting the sample fluorescence. In project FluoTRAM we will implement our technique in the fluorescence microscope, where it truly reveals its potential. Using the established imaging techniques and markers, FluoTRAM brings the additional information on the excitation event and the dynamics towards the emissive state. We will implement FluoTRAM in two parallel stages, the time resolution and the spectrally varying excitation. The time resolution will be achieved using chopped laser pulses, varying their delay by a delay stage and recording a difference fluorescence in a pump-probe fashion. The excitation spectrum scanning will be realized interferometrically, creating a phase-stable replica of the excitation pulse and scanning the delay between the two. The comprehensive additional information on the excitation dynamics from absorption to emission will be of great use in life sciences and beyond. Examples include correlation of the excitation and emission spectra (increased Stokes shift vs red shift) for dye probes, intramolecular charge transfer in fluorescent proteins, or charge transfer and recombination in organic materials.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences biochemistry biomolecules proteins
- natural sciences physical sciences optics microscopy
- natural sciences physical sciences optics spectroscopy absorption spectroscopy
- natural sciences physical sciences optics laser physics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
116 36 Praha 1
Czechia
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.