Skip to main content

Rationally optimized, nanostructure-based biosensors for multi-biomarker cancer diagnostics


While electrochemical biosensors are attractive methods of cancer detection, thanks to their low cost and ease of use, nanostructured materials (NSM) are being widely utilized as their biosensing elements due to large surface-to-volume ratio and high sensitivity to external charge transfer. Despite the promise of high performance, current NSM-based electrochemical biosensors for cancer detection focus on one NSM analyzing only a single biomarker type, which makes them unsuitable for low-concentration biomarker detection as required in the analysis of bodily fluids. The combination of several biomarkers has both conceptual and experimental challenges, since different biomarkers have different requirements on the NSM type with different chemistry and transduction mechanisms. Thus, the morphological and physical differences have to be considered for co-integrating such diverse NSMs. I propose to elucidate the effect of NSM morphologies, compositions, and junctions on the operation, sensitivity, and fabricability of biosensors for cancer detection. This goal will be achieved by employing realistic carrier conduction simulations of state-of-the-art NSM assemblies with varying morphology, geometry, and transduction mechanisms to external stimuli. Using my expertise on complex-network-based modelling, the proposed project will provide guidelines for the design of nanostructured devices for optimal biosensors, and allow extrapolation towards the highest achievable performance. This knowledge will inform the fabrication of assay-type electrochemical biosensors for applications in cancer diagnostics. The strong multidisciplinary nature of the project will benefit from the complementary expertise between me and the host institution, enabling a synergy of fundamental advances and application-oriented research. My proposal opens up a new route for achieving high sensitivity biosensing for future diagnostics and therapeutics.

Call for proposal

See other projects for this call

Funding Scheme

MSCA-IF-EF-ST - Standard EF


South Kensington Campus Exhibition Road
SW7 2AZ London
United Kingdom
Activity type
Higher or Secondary Education Establishments
EU contribution
€ 212 933,76