Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Biodegradable bottlebrush polycarbonates with benzophenone groups for the preparation of tissue engineering scaffolds

Project description

Novel biomaterials for tissue engineering

Aliphatic polycarbonates are compounds that contain the chemical group -O-C(O)-O- in a non-aromatic structure. Recent years have seen a resurged interest in these molecules due to advancement in their production. Their attractive features include biocompatibility and acid-free degradation, rendering aliphatic polycarbonates ideal for biomaterials as they don’t cause tissue inflammation. Moreover, they can be functionalised and can thus serve as implants and drug vehicles. The EU-funded PhotoPolyCarb project is working on a 3D printing approach that uses aliphatic polycarbonates to generate biomaterials for tissue engineering purposes. The approach constitutes a step closer to the development of tailor-made implants, which have the potential to improve the patients’ health and quality of life.

Objective

Over the past years, aliphatic polycarbonates (APCs) have gained prominence in the biomedical field in reason of their features allied to their in vivo bioresorbability. Unlike polyesters, the degradation products of APCs are acid free, which prevents tissue inflammation and drug denaturation upon their use as implants and drug vehicles, making them a potential material in the medical field. Simultaneously, the 3D printing of biomaterials has recently advanced the development of tailor-made implants, which can improve the patients’ health and quality of life. However, the translative impact of 3D printing to clinical use is still beset with limitations, including the brittle nature of the properties of materials that are available, the crosslinking chemistries that hinder translation into cell-laden biomaterials and toxicity of residual monomers and additives. PhotoPolyCarb aims to overcome these limitations by combining functional photoreactive polycarbonates from different topographies with stereolithography (SLA), thus avoiding the use of toxic monomers and photoinitiators during the printing process. In a transfer of knowledge, PhotoPolyCarb will bring together the expertise of the researchers in areas such as chemical engineering reactions (from the applicant), polymer chemistry (from the host) and bioengineering (from the secondment). The fellowship will permit the applicant to work with world-renowned research groups in the field of biomaterials and tissue engineering, allowing her to develop skills in an interdisciplinary environment and consolidate her career. The dissemination of research results will target the professional audience as well the public through outreach activities.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2020

See all projects funded under this call

Coordinator

THE UNIVERSITY OF BIRMINGHAM
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 212 933,76
Address
Edgbaston
B15 2TT Birmingham
United Kingdom

See on map

Region
West Midlands (England) West Midlands Birmingham
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 212 933,76
My booklet 0 0