Descripción del proyecto
Los sistemas cuánticos resistentes a cambios térmicos podrían favorecer avances en el almacenamiento de información en el futuro
Los sistemas cuánticos complejos suelen relajarse con rapidez frente el comportamiento térmico por sí mismos, al igual que se prevé que se derritan los cubos de hielo en una bebida. Esto podría constituir un obstáculo notable al desarrollo de futuros sistemas de almacenamiento cuánticos, ya que no podrían recuperar los datos. Nuevos estudios sugieren que un sistema cuántico podría resistir cambios térmicos en su entorno a través de un mecanismo conocido como «ruptura de ergodicidad», que «congela» el sistema cerca de su estado inicial durante mucho tiempo. En el proyecto EBQM, financiado por las Acciones Marie Skłodowska-Curie, se estudiará a fondo dos mecanismos de la ruptura de ergodicidad: la localización de muchos cuerpos y los cristales cuánticos. Una mejor comprensión de estos mecanismos podría ayudar a diseñar materia cuántica resistente a la termalización.
Objetivo
Left to their own devices, typical physical systems will eventually reach thermal equilibrium with their environment. While a familiar feature of life in the classical world – think of ice melting in a drink, or coffee cooling to room temperature – this process of thermalisation can pose a serious problem for quantum technologies.
When a physical system thermalises, any information once contained in it is scrambled, essentially lost to the environment - the coffee does not ‘remember’ it was once hot, nor does the drink ‘remember’ it once contained an ice cube. The same principle holds true for quantum systems: if they undergo thermalisation, they will effectively have lost all information about how they were initially prepared. For future quantum technologies which will rely on the storage and retrieval of information (such as quantum computers), this loss of memory could be disastrous.
It turns out to be possible to prevent quantum systems from thermalising through a mechanism known as ergodicity breaking, which 'freezes' the system close to its initial state for a very long - possibly even infinite - amount of time. This is most commonly achieved through the addition of disorder. There are two key examples of so-called 'strong ergodicity breaking', namely many-body localisation (MBL) and quantum glasses. Both exhibit very different properties - MBL is a property of highly excited states of quantum systems that requires them to be isolated from their surroundings, whereas quantum glasses are low temperature states which exhibit a remarkable robustness towards coupling with their environment. While both effects are ostensibly of different origin, there is good reason to believe that they are deeply linked, and that by combining the strengths of both, we may be able to theoretically engineer robust mechanisms for inhibiting the thermalisation of quantum systems that will have a significant impact on future quantum technologies. That is the goal of this proposal.
Ámbito científico
Palabras clave
Programa(s)
Régimen de financiación
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)Coordinador
14195 Berlin
Alemania