Descrizione del progetto
Sistemi quantistici immuni agli sbalzi termici potrebbero innescare progressi nella futura archiviazione delle informazioni
Di solito, i sistemi quantistici complessi si lasciano andare in fretta di fronte a diverse condizioni termiche se abbandonati a se stessi, proprio come accade ai cubetti di ghiaccio che si sciolgono quando finiscono in una bevanda. Questo aspetto potrebbe costituire un ostacolo rilevante allo sviluppo di sistemi quantistici di archiviazione futuri poiché non sarebbero in grado di recuperare i dati. Alcuni studi recenti ipotizzano che un sistema quantistico potrebbe sopportare gli sbalzi termini nel proprio ambiente mediante un meccanismo noto con il nome di rottura dell’ergodicità, che «congela» il sistema vicino al proprio stato iniziale per un periodo molto lungo di tempo. Il progetto EBQM, finanziato dal programma di azioni Marie Skłodowska-Curie, studierà in maniera approfondita due meccanismi della rottura dell’ergodicità: la localizzazione a molti corpi e gli occhiali quantistici. Una migliore comprensione di questi meccanismi potrebbe contribuire all’ingegnerizzazione di materia quantistica immune alla termalizzazione.
Obiettivo
Left to their own devices, typical physical systems will eventually reach thermal equilibrium with their environment. While a familiar feature of life in the classical world – think of ice melting in a drink, or coffee cooling to room temperature – this process of thermalisation can pose a serious problem for quantum technologies.
When a physical system thermalises, any information once contained in it is scrambled, essentially lost to the environment - the coffee does not ‘remember’ it was once hot, nor does the drink ‘remember’ it once contained an ice cube. The same principle holds true for quantum systems: if they undergo thermalisation, they will effectively have lost all information about how they were initially prepared. For future quantum technologies which will rely on the storage and retrieval of information (such as quantum computers), this loss of memory could be disastrous.
It turns out to be possible to prevent quantum systems from thermalising through a mechanism known as ergodicity breaking, which 'freezes' the system close to its initial state for a very long - possibly even infinite - amount of time. This is most commonly achieved through the addition of disorder. There are two key examples of so-called 'strong ergodicity breaking', namely many-body localisation (MBL) and quantum glasses. Both exhibit very different properties - MBL is a property of highly excited states of quantum systems that requires them to be isolated from their surroundings, whereas quantum glasses are low temperature states which exhibit a remarkable robustness towards coupling with their environment. While both effects are ostensibly of different origin, there is good reason to believe that they are deeply linked, and that by combining the strengths of both, we may be able to theoretically engineer robust mechanisms for inhibiting the thermalisation of quantum systems that will have a significant impact on future quantum technologies. That is the goal of this proposal.
Campo scientifico
Not validated
Not validated
Programma(i)
Argomento(i)
Meccanismo di finanziamento
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)Coordinatore
14195 Berlin
Germania