Projektbeschreibung
Informationsspeicherung der Zukunft mit thermisch unempfindlichen Quantensystemen?
Typischerweise entspannen sich komplexe Quantensysteme im Temperaturverhalten schnell, wenn sie sich selbst überlassen sind, ähnlich wie in ein Getränk gefallene Eiswürfel schmelzen. Dieses Merkmal könnte die Entwicklung zukünftiger Quantenspeichersysteme ernsthaft behindern, da sie nicht in der Lage wären, Daten abzurufen. Neue Untersuchungen legen nun nahe, dass ein Quantensystem thermischen Veränderungen in seiner Umgebung durch den Mechanismus der sogenannten Ergodizitätsbrechung widerstehen könnte, der das System für eine sehr lange Zeit nahe seinem Ausgangszustand „einfriert“. Das im Rahmen der Marie-Skłodowska-Curie-Maßnahmen finanzierte Projekt EBQM wird zwei Mechanismen der Ergodizitätsbrechung eingehend erforschen: die Vielteilchenlokalisierung und Quantengläser. Vertieftes Wissen über diese Mechanismen könnte hilfreich dabei sein, gegenüber Thermalisierung unempfindliche Quantenmaterie zu entwickeln.
Ziel
Left to their own devices, typical physical systems will eventually reach thermal equilibrium with their environment. While a familiar feature of life in the classical world – think of ice melting in a drink, or coffee cooling to room temperature – this process of thermalisation can pose a serious problem for quantum technologies.
When a physical system thermalises, any information once contained in it is scrambled, essentially lost to the environment - the coffee does not ‘remember’ it was once hot, nor does the drink ‘remember’ it once contained an ice cube. The same principle holds true for quantum systems: if they undergo thermalisation, they will effectively have lost all information about how they were initially prepared. For future quantum technologies which will rely on the storage and retrieval of information (such as quantum computers), this loss of memory could be disastrous.
It turns out to be possible to prevent quantum systems from thermalising through a mechanism known as ergodicity breaking, which 'freezes' the system close to its initial state for a very long - possibly even infinite - amount of time. This is most commonly achieved through the addition of disorder. There are two key examples of so-called 'strong ergodicity breaking', namely many-body localisation (MBL) and quantum glasses. Both exhibit very different properties - MBL is a property of highly excited states of quantum systems that requires them to be isolated from their surroundings, whereas quantum glasses are low temperature states which exhibit a remarkable robustness towards coupling with their environment. While both effects are ostensibly of different origin, there is good reason to believe that they are deeply linked, and that by combining the strengths of both, we may be able to theoretically engineer robust mechanisms for inhibiting the thermalisation of quantum systems that will have a significant impact on future quantum technologies. That is the goal of this proposal.
Wissenschaftliches Gebiet
Not validated
Not validated
Schlüsselbegriffe
Programm/Programme
Thema/Themen
Aufforderung zur Vorschlagseinreichung
Andere Projekte für diesen Aufruf anzeigenFinanzierungsplan
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)Koordinator
14195 Berlin
Deutschland