Project description DEENESFRITPL New toolbox could shed light on the recrystallisation mechanism in materials Microstructural characterisation techniques are advancing, but they are still limited in their ability to explain the complex behaviour of recrystallisation. The latter refers to the process in which deformed grains of the crystal structure are replaced by stress-free grains. Three-dimensional (3D) quantification could help reveal whether unexpected local grain boundary migration is associated with local variations in the deformed microstructure. Funded by the Marie Skłodowska-Curie Actions programme, the VETRex4D project aims to prove that a virtual experimental toolbox for 3D/4D recrystallisation could provide more insight into this relationship. For the first time, this toolbox will couple quantitative phase-field simulations with 4D X-ray microscopy experimental data. Show the project objective Hide the project objective Objective Although microstructural characterization techniques are advancing, they are still inadequate to explain the complex behavior of recrystallization: Unexpected local grain boundary migration may relate to local variations in the deformation microstructure, but 3D quantification is needed. Newer studies suggest that residual stress may affect the boundary migration, but consensus is lacking. Additive manufacturing is becoming popular. Here the formation of pores/voids are observed but their effect on boundary migration is totally unexplored. Various processes and materials parameters are coupled and acting simultaneously, their individual effects cannot be separated experimentally. A novel paradigm is required to quantify the above-mentioned new and critical aspects with the larger longer-term goal to improve properties and design novel materials. I want to show that a virtual experimental toolbox for 3D/4D recrystallization is the way forward to remove the bottleneck. In this toolbox, for the first time ever, quantitative phase-field simulations will be directly coupled with 4D X-ray Microscopy (4DXRM) experimental data. The necessary steps to achieve my goals:1) Develop expertise in 4DXRM and learn to design the critical experimental studies (supervisor is expert).2) Develop quantitative 3D phase-field models to capture complex behavior of recrystallization and implementation it in MOOSE Framework software for large-scale simulations (PI is expert)3) Coupling of 4DXRM data with MOOSE Framework (in collaboration).The vision is that the newly developed virtual experimental toolbox can be used by experimentalists and scientists in industry with minimal training. This fellowship is going to make me a unique expert in the field of phase-field model development and experienced in 4DXRM characterization, which will make me employable at leading European research institutions. Fields of science natural sciencesphysical sciencesopticsmicroscopyengineering and technologymechanical engineeringmanufacturing engineeringadditive manufacturing Programme(s) H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions Main Programme H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility Topic(s) MSCA-IF-2020 - Individual Fellowships Call for proposal H2020-MSCA-IF-2020 See other projects for this call Funding Scheme MSCA-IF-EF-ST - Standard EF Coordinator DANMARKS TEKNISKE UNIVERSITET Net EU contribution € 207 312,00 Address Anker engelunds vej 101 2800 Kongens lyngby Denmark See on map Region Danmark Hovedstaden Københavns omegn Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00