Description du projet
L’imagerie particulaire basée sur des caméras sous‑marines à haute résolution permet d’évaluer les flux d’exportation du carbone océanique
De petits changements dans l’efficacité de la pompe à carbone biologique (BCP) peuvent modifier considérablement la séquestration du carbone océanique et, par conséquent, jouer sur le CO2 atmosphérique et le climat. À l’heure actuelle, les facteurs qui déterminent la variabilité de la BCP sont mal compris et les estimations annuelles mondiales de l’ampleur des exportations de carbone de la surface des océans via la BCP varient jusqu’à 400 %. Le projet IMOS, financé par l’UE, s’attachera à accroître la précision des évaluations des exportations et à limiter leur variabilité à l’aide des dernières avancées technologiques en matière d’imagerie in situ et d’échantillonnage autonome, combinées à des méthodes avancées de collecte des particules coulantes et à de puissants outils de simulation. La recherche reliera les propriétés optiques aux mesures directes du flux de carbone afin d’obtenir une quantification à plus haute résolution de l’exportation de carbone dans les océans via la BCP.
Objectif
It is becoming increasingly evident that small changes in the efficiency of the Biological Carbon Pump BCP can significantly alter ocean carbon sequestration and, thus, atmospheric CO2 and climate. Despite their importance, the factors that drive the BCP variability are poorly understood. As a consequence, current annual global estimates of the magnitude of carbon (C) export from the surface ocean via the BCP vary up to 400% (from 5 to 21 Gt C yr-1). IMOS will focus on increasing the precision of the export assessments and restraining the variability by taking advantage of some of the most promising technological advances in in-situ imaging and autonomous sampling combined with state of the art methods and powerful simulation tools. Specifically, IMOS will use particle imaging with high resolution underwater cameras, UVP (Underwater Vision Profiler) type, which will be combined with a uniquely modified autonomous float to allow for the first time simultaneous in-situ particle imaging and sinking particle collection. The overall research objective is to link optical properties to direct C flux measurements to obtain higher resolution quantification of C export in the oceans via the BCP.
The fellow will spend the first 2 years at the Woods Hole Oceanographic Institution (WHOI) under the supervision of Dr. Ken Buesseler. The last 12 months will be spent at the Universidad de Sevilla (USE), under the supervision of Dr. María Villa-Alfageme. She will return to Europe with the technical expertise required to work with unique field measurements and develop improved global parametrizations of the BCP efficiency, which are key areas of expertise for describing the present and future role of the BCP in global climate models. Research results will be of interest to worldwide researchers working on the study of the impact of the BCP on the global C cycle, promoting European excellence and competitiveness in dedicated European and international carbon export projects.
Champ scientifique
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensorsoptical sensors
- natural sciencescomputer and information sciencessoftwaresoftware applicationssimulation software
- agricultural sciencesagriculture, forestry, and fisheriesforestry
Programme(s)
Régime de financement
MSCA-IF-GF - Global FellowshipsCoordinateur
41004 Sevilla
Espagne