Projektbeschreibung
Neurosymbolischer Ansatz für Systeme zur Sprachgenerierung
Mit KI-Programmierung können aus Daten Texte erstellt werden. Dieser Prozess heißt Generierung natürlicher Sprache (Natural Language Generation, NLG), bei der komplexe Daten in natürliche Sprache verwandelt wird. Diese soll klingen, als hätte ein Mensch sie geschrieben. Das EU-finanzierte Projekt NG-NLG wird neuronale Ansätze zur Sprachgenerierung, die derzeit nur auf experimenteller Ebene zum Einsatz kommen, weiter erkunden. Der Hintergrund ist, dass aktuelle neuronale Systeme zwar sehr natürliche Sprache generieren, ihr Verhalten jedoch weder transparent noch zuverlässig ist. Das Projekt wird innovative Ansätze erarbeiten, die neuronale Ansätze mit expliziten Repräsentationen symbolischer Semantik kombinieren. So können das Ergebnis und die expliziten logischen Inferenzen besser über die Daten gesteuert werden. Das Projekt wird die Ansätze an der Erzeugung von Text aus Daten, Zusammenfassungen und der Generierung von Dialogantworten testen.
Ziel
This project aims to overcome the major hurdles that prevent current state-of-the-art models for natural language generation (NLG) from real-world deployment.
While deep learning and neural networks brought considerable progress in many areas of natural language processing, neural approaches to NLG remain confined to experimental use and production NLG systems are handcrafted. The reason for this is that despite the very natural and fluent outputs of recent neural systems, neural NLG still has major drawbacks: (1) the behavior of the systems is not transparent and hard to control (the internal representation is implicit), which leads to incorrect or even harmful outputs, (2) the models require a lot of training data and processing power do not generalize well, and are mostly English-only. On the other hand, handcrafted models are safe, transparent and fast, but produce less fluent outputs and are expensive to adapt to new languages and domains (topics). As a result, usefulness of NLG models in general is limited. In addition, current methods for automatic evaluation of NLG outputs are unreliable, hampering system development.
The main aims of this project, directly addressing the above drawbacks, are:
1) Develop new approaches for NLG that combine neural approaches with explicit symbolic semantic representations, thus allowing greater control over the outputs and explicit logical inferences over the data.
2) Introduce approaches to model compression and adaptation to make models easily portable across domains and languages.
3) Develop reliable neural-symbolic approaches for evaluation of NLG systems.
We will test our approaches on multiple NLG applications—data-to-text generation (e.g. weather or sports reports), summarization, and dialogue response generation. For example, our approach will make it possible to deploy a new data reporting system for a given domain based on a few dozen example input-output pairs, compared to thousands needed by current methods.
Schlüsselbegriffe
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
-
HORIZON.1.1 - European Research Council (ERC)
HAUPTPROGRAMM
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
HORIZON-ERC - HORIZON ERC Grants
Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
(öffnet in neuem Fenster) ERC-2021-STG
Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigenGastgebende Einrichtung
Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.
116 36 Praha 1
Tschechien
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.