Objectif
The recent advances in deep learning (DL) have transformed many scientific domains and have had major impacts on industry and society. Despite their success, DL methods do not obey most of the wisdoms of statistical learning theory, and the vast majority of the current DL techniques mainly stand as poorly understood black-box algorithms.
Even though DL theory has been a very active research field in the past few years, there is a significant gap between the current theory and practice: (i) the current theory often becomes vacuous for models with large number of parameters (which is typical in DL), and (ii) it cannot capture the interaction between data, architecture, training algorithm and its hyper-parameters, which can have drastic effects on the overall performance. Due to this lack of theoretical understanding, designing new DL systems has been dominantly performed by ad-hoc, 'trial-and-error' approaches.
The main objective of this proposal is to develop a mathematically sound and practically relevant theory for DL, which will ultimately serve as the basis of a software library that provides practical tools for DL practitioners. In particular, (i) we will develop error bounds that closely reflect the true empirical performance, by explicitly incorporating the dynamics aspect of training, (ii) we will develop new model selection, training, and compression algorithms with reduced time/memory/storage complexity, by exploiting the developed theory.
To achieve the expected breakthroughs, we will develop a novel theoretical framework, which will enable tight analysis of learning algorithms in the lens of dynamical systems theory. The outcomes will help relieve DL from being a black-box system and avoid the heuristic design process. We will produce comprehensive open-source software tools adapted to all popular DL libraries, and test the developed algorithms on a wide range of real applications arising in computer vision, audio/music/natural language processing.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: https://op.europa.eu/fr/web/eu-vocabularies/euroscivoc.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: https://op.europa.eu/fr/web/eu-vocabularies/euroscivoc.
- sciences naturelles informatique et science de l'information logiciel
- sciences naturelles mathématiques mathématiques pures arithmétique
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Mots‑clés
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
HORIZON.1.1 - European Research Council (ERC)
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
HORIZON-ERC - HORIZON ERC Grants
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) ERC-2021-STG
Voir tous les projets financés au titre de cet appelInstitution d’accueil
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
78153 Le Chesnay Cedex
France
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.