Descrizione del progetto
Caratterizzazione proteomica dei cloroplasti endosimbiotici nelle alghe eucariotiche
La fotosintesi oceanica è svolta da cianobatteri e alghe eucariotiche. Queste alghe eucariotiche hanno origine attraverso l’acquisizione endosimbiotica dei cloroplasti. Infatti, molti dei gruppi algali marini più importanti possiedono cloroplasti derivati dall’assorbimento endosimbiotico secondario o superiore di alghe rosse eucariotiche. Il programma ChloroMosaic, finanziato dall’UE, mira a comprendere i fondamenti dell’evoluzione e dell’ecologia futura del pianeta, spiegando il successo dei cloroplasti secondari rossi nell’oceano moderno. I cloroplasti secondari rossi sono mosaici evolutivi e sono sostenuti da proteine codificate dal nucleo del simbionte. ChloroMosaic eseguirà l’analisi proteomica dei cloroplasti delle dinoflagellate per identificare le proteine, consentendo di individuare il contributo dominante dei cloroplasti secondari rossi alla produzione marina e di definire potenziali biomarcatori della resilienza delle comunità algali ai cambiamenti climatici antropogenici.
Obiettivo
"Photosynthesis in the ocean is as significant as that of land plants, and is performed by a wide range of cyanobacteria and eukaryotic algae, the most abundant of which have originated through the secondary endosymbioses of red algae. Previously, I have shown that these ""secondary red chloroplasts"" are evolutionary mosaics, supported by nucleus-encoded proteins of symbiont, host and horizontally acquired origin; and that the most successful of these groups (diatoms, haptophytes and dinoflagellates) are connected to one another via chloroplast endosymbioses.
My research programme will answer a question of fundamental importance to the evolutionary history, and future ecology of the planet: why is the secondary red chloroplast so successful in the modern ocean? I will perform next-generation proteomic (LOPIT) characterisation of the dinoflagellate chloroplast, whose composition remains unknown; phylogenomic and spatial reconstruction of the pan-secondary red chloroplast proteome, using environmental sequence data from the Tara Oceans expedition; and phenotyping of proteins via CRISPR/Cas9 mutagenesis in the model diatom Phaeodactylum. I will focus on defining the proteins that underpin the dominant contributions of secondary red chloroplasts to marine primary production; and their unique success in high oceanic latitudes.
Thus far, I have characterised a mitochondria-associated transporter that facilitates photo-acclimation in secondary red chloroplasts under Fe limitation; and a complete glycolytic pathway that regulates diatom chloroplast metabolism in polar oceans. The phylogenetically-grounded insights from this project will connect a defining event in eukaryotic evolution, the endosymbiotic evolution of chloroplasts, to the functional biology of marine ecosystems; identify new proteins for optimising photosynthetic production in cultivable species; and define new biomarkers for the resilience of algal communities to anthropogenic climate change.
"
Campo scientifico
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
- natural sciencesbiological sciencesbiochemistrybiomoleculesproteinsproteomics
- natural sciencesbiological sciencesmicrobiologyphycology
- natural sciencesphysical sciencesastronomyplanetary sciencesplanets
- natural sciencesbiological sciencesecologyecosystems
- natural sciencesearth and related environmental sciencesatmospheric sciencesclimatologyclimatic changes
Parole chiave
Programma(i)
- HORIZON.1.1 - European Research Council (ERC) Main Programme
Argomento(i)
Meccanismo di finanziamento
ERC - Support for frontier research (ERC)Istituzione ospitante
75794 Paris
Francia