Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Parameterized Complexity Through the Lens of Path Problems

Descripción del proyecto

Otra forma de estudiar el más difícil de los problemas difíciles

Algunos problemas no tienen solución: son los más difíciles de los difíciles. Se denominan NP-duros y no admiten algoritmos eficientes del peor caso. El campo de la complejidad parametrizada revela que la base de esta dificultad reside a menudo en propiedades particulares de las instancias llamadas «parámetros». En el núcleo de la complejidad parametrizada se encuentra el estudio de los problemas de camino (o ciclo). Sin embargo, las cuestiones fundamentales relativas a los problemas de camino siguen sin respuesta y se desconocen las relaciones entre las diferentes técnicas para resolver estos problemas. En el proyecto PARAPATH, financiado con fondos europeos, se formulará una teoría profunda unificada para analizar los problemas de camino parametrizados. El proyecto dará respuesta a la pregunta fundamental «¿Qué hace que un problema NP-duro sea difícil?» La respuesta ayudará a diseñar algoritmos eficientes para amplias clases de instancias de problemas NP-duros.

Objetivo

Nowadays, numerous problems are known to be NP-hard, and hence unlikely to admit worst-case efficient algorithms. Fortunately, the field of Parameterized Complexity (PC) shows that the nutshell of hardness often lies in particular properties (called parameters) of the instances. Here, we answer the fundamental question: What makes an NP-hard problem hard? Specifically, how do different parameters of an NP-hard problem relate to its inherent difficulty? Based on this knowledge, we design efficient algorithms for wide-classes of instances of NP-hard problems.
At the heart of PC lies the study of path (or cycle) problems. The inception of PC was inspired by the Graph Minors Theory, where the resolution of DISJOINT PATHS is a cornerstone. Moreover, the study of k-PATH has led to a large number of major breakthroughs in PC over the past three decades. Still, (i) fundamental questions concerning path problems have remained unanswered, and (ii) close to nothing is known about the relations between the different techniques to solve path problems.
The overarching goal of this proposal is to build a unified, deep theory to analyze parameterized path problems.
As known techniques to solve path problems rely, individually, on Graph Minors Theory, Extremal Combinatorics, Matroid Theory, Exterior Algebra, and more, I will draw new deep connections between these fields (towards unification).
Based on the new theory, I believe that I will be able to answer decades-old questions in PC, which will revolutionize the power of this field. This includes the establishment of an Efficient Graph Minors Theory, an optimality program for color-coding-amenable problems, and a machinery to refute the existence of polynomial Turing kernels. Answers to these questions will substantially reshape the future of the design of parameterized algorithms, graph algorithms, and preprocessing procedures. Additionally, they will have high impact applications in practice.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

HORIZON-ERC - HORIZON ERC Grants

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) ERC-2021-STG

Ver todos los proyectos financiados en el marco de esta convocatoria

Institución de acogida

BEN-GURION UNIVERSITY OF THE NEGEV
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 1 499 821,00
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

€ 1 499 821,00

Beneficiarios (1)

Mi folleto 0 0