European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Inverse Design of Optoelectronic Phosphosulfides

Descrizione del progetto

Un approccio di progettazione inversa per creare materiali ad alte prestazioni destinati ad applicazioni di energia solare

I progressi compiuti nel campo delle tecnologie per l’energia sostenibile fanno in gran parte affidamento sulla scoperta di nuovi materiali presenti in abbondanza sulla Terra con capacità senza precedenti in termini di conduzione ionica, catalizzazione di reazioni e trasporto di vettori fotogenerati. Il progetto IDOL, finanziato dall’UE, invertirà il tradizionale processo di progettazione dei materiali per scoprirne e crearne alcuni dotati di eccellenti proprietà optoelettroniche e con bande proibite superiori agli 1,5 eV. Inizialmente il lavoro a livello teorico e sperimentale sarà incentrato sui solfuri di fosforo e successivamente verrà esteso ad altre tipologie di materiali. I solfuri di fosforo dotati delle proprietà desiderate saranno integrati in effettivi dispositivi fotovoltaici.

Obiettivo

Progress in sustainable energy technology relies on the discovery of new earth-abundant materials with unprecedented ability to conduct ions, catalyze reactions, transport photogenerated carriers, etc. The main scientific question is how to find the materials with exactly the desired functionality from the huge pool of all possible materials (more than 10^12).

In IDOL, we will attempt to answer the long-standing question of inverse materials design. Our targeted functionality is high optoelectronic quality (i.e. long photocarrier lifetimes, high mobilities, and high absorption coefficient) in an earth-abundant semiconductor with band gap above 1.5 eV. This will be a breakthrough in three areas key to a sustainable energy future: multijunction photovoltaics, light-emitting diodes, and solar fuels.

The IDOL approach is a combination of experimental and computational research, focusing on the most device-relevant material form: thin films. Initially, we will restrict our search to the intriguing and still highly underexplored family of phosphosulfides (PSs). Later, we will extend our insights to other chemistries. From my preliminary investigation, many PSs should exhibit high mobilities and appropriate band gaps.

We will break the inverse design problem into logically connected steps: from application-specific figures of merit, going back to defect properties, generic optoelectronic properties, structure, growth conditions, and composition. We will exploit a unique combinatorial deposition system to grow candidate materials and characterize them using high throughput facilities at our host. For properties not experimentally accessible, we will employ first-principles calculations. This hybrid dataset will be analyzed step-by-step by human intelligence and machine learning to formulate design criteria and generate new materials with the desired properties. The discovered PS with the highest figures of merit will be incorporated into an actual photovoltaic device.

Istituzione ospitante

DANMARKS TEKNISKE UNIVERSITET
Contribution nette de l'UE
€ 2 263 750,00
Indirizzo
ANKER ENGELUNDS VEJ 101
2800 Kongens Lyngby
Danimarca

Mostra sulla mappa

Regione
Danmark Hovedstaden Københavns omegn
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale
€ 2 263 750,00

Beneficiari (1)