Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Interactive and Explainable Human-Centered AutoML

Descripción del proyecto

Democratización del aprendizaje automático automatizado teniendo en cuenta las personas

El aprendizaje automático automatizado (AutoML, por sus siglas en inglés) es una cuestión de confianza e interactividad. Ambos son factores fundamentales para apoyar a los programadores e investigadores, pero, a pesar de los enormes avances de los últimos años, la democratización del aprendizaje automático a través de AutoML aún no se ha logrado. En cambio, el proyecto ixAutoML, financiado con fondos europeos, se ha concebido teniendo en cuenta a los usuarios humanos en varias etapas. El equipo pretende reunir lo mejor de dos mundos: la intuición y la capacidad de generalización de las personas para los sistemas complejos y la eficacia de los métodos de optimización sistemática para el AutoML. Creen que su oportuno AutoML interactivo y explicable centrado en el ser humano (ixAutoML, por sus siglas en inglés) tendrá una repercusión significativa en hacer que el aprendizaje automático sea accesible para una base mucho más amplia.

Objetivo

Trust and interactivity are key factors in the future development and use of automated machine learning (AutoML), supporting developers and researchers in determining powerful task-specific machine learning pipelines, including pre-processing, predictive algorithm, their hyperparameters and--if applicable--the architecture design of deep neural networks. Although AutoML is ready for its prime time after it achieved impressive results in several machine learning (ML) applications and its efficiency improved by several orders of magnitudes in recent years, democratization of machine learning via AutoML is still not achieved. In contrast to previously purely automation-centered approaches, ixAutoML is designed with human users at its heart in several stages. First of all, the foundation of trustful use of AutoML will be based on explanations of its results and processes. Therefore, we aim for:

1. Explaining static effects of design decisions in ML pipelines optimized by state-of-the-art AutoML systems.
2. Explaining dynamic AutoML policies for temporal aspects of dynamically adapted hyperparameters while ML models are trained.

These explanations will be the base for allowing interactions, bringing the best of two worlds together: human intuition and generalization capabilities for complex systems, and efficiency of systematic optimization approaches for AutoML. Concretely, we aim for:

3. Enabling interactions between humans and AutoML by taking human's latent knowledge into account and learning when to interact.
4. Building first ixAutoML prototypes and showing its efficiency in the context of Industry 4.0.

Perfectly aligned with the EU's AI strategy and recent efforts on interpretability in the ML community, we strongly believe that this timely human-centered ixAutoML will have a substantial impact on the democratization of machine learning.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

HORIZON-ERC - HORIZON ERC Grants

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) ERC-2021-STG

Ver todos los proyectos financiados en el marco de esta convocatoria

Institución de acogida

GOTTFRIED WILHELM LEIBNIZ UNIVERSITAET HANNOVER
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 1 459 763,00
Dirección
WELFENGARTEN 1
30167 Hannover
Alemania

Ver en el mapa

Región
Niedersachsen Hannover Region Hannover
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

€ 1 459 763,00

Beneficiarios (1)

Mi folleto 0 0