Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Interactive and Explainable Human-Centered AutoML

Opis projektu

Demokratyzacja automatycznego uczenia maszynowego z korzyścią dla ludzi

Automatyczne uczenie maszynowe (AutoML) to kwestia zaufania i interaktywności – są to kluczowe czynniki wspierające programistów i naukowców, ale mimo ogromnego postępu poczynionego w ostatnich latach technologia AutoML nie doprowadziła jeszcze do demokratyzacji uczenia maszynowego. W związku z tym finansowany przez UE projekt ixAutoML ma się koncentrować nie tylko na technologii, ale angażować również ludzi jako jej użytkowników. Zespół projektu dąży do połączenia tego, co najlepsze w dwóch światach: ludzkiej intuicji i możliwości generalizacji w przypadku złożonych systemów oraz efektywności systematycznych metod optymalizacji w przypadku AutoML. Naukowcy wierzą, że ich skoncentrowane na człowieku rozwiązanie ixAutoML – Interactive and Explainable Human-Centered AutoML – znacząco wpłynie na zwiększenie dostępności uczenia maszynowego dla dużo szerszej grupy użytkowników.

Cel

Trust and interactivity are key factors in the future development and use of automated machine learning (AutoML), supporting developers and researchers in determining powerful task-specific machine learning pipelines, including pre-processing, predictive algorithm, their hyperparameters and--if applicable--the architecture design of deep neural networks. Although AutoML is ready for its prime time after it achieved impressive results in several machine learning (ML) applications and its efficiency improved by several orders of magnitudes in recent years, democratization of machine learning via AutoML is still not achieved. In contrast to previously purely automation-centered approaches, ixAutoML is designed with human users at its heart in several stages. First of all, the foundation of trustful use of AutoML will be based on explanations of its results and processes. Therefore, we aim for:

1. Explaining static effects of design decisions in ML pipelines optimized by state-of-the-art AutoML systems.
2. Explaining dynamic AutoML policies for temporal aspects of dynamically adapted hyperparameters while ML models are trained.

These explanations will be the base for allowing interactions, bringing the best of two worlds together: human intuition and generalization capabilities for complex systems, and efficiency of systematic optimization approaches for AutoML. Concretely, we aim for:

3. Enabling interactions between humans and AutoML by taking human's latent knowledge into account and learning when to interact.
4. Building first ixAutoML prototypes and showing its efficiency in the context of Industry 4.0.

Perfectly aligned with the EU's AI strategy and recent efforts on interpretability in the ML community, we strongly believe that this timely human-centered ixAutoML will have a substantial impact on the democratization of machine learning.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

HORIZON-ERC - HORIZON ERC Grants

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) ERC-2021-STG

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Instytucja przyjmująca

GOTTFRIED WILHELM LEIBNIZ UNIVERSITAET HANNOVER
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 1 459 763,00
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

€ 1 459 763,00

Beneficjenci (1)

Moja broszura 0 0