Descripción del proyecto
Magnónica molecular bidimensional inteligente para mejorar las tecnologías de la información
Los materiales magnéticos bidimensionales (2D) de van der Waals son componentes básicos con capacidades sin precedentes para transmitir, almacenar y procesar información con ondas de espín (cuyos cuantos se denominan «magnones») en el límite de la miniaturización. En el proyecto 2D-SMARTiES, financiado por el Consejo Europeo de Investigación, se empleará un método químico para desarrollar una nueva generación de dispositivos magnónicos basados en heteroestructuras híbridas moleculares 2D, en las que la manipulación externa de moléculas sensibles a estímulos determina el control preciso de la dinámica de espín. Además, se creará un marco teórico e informático eficaz para guiar los trabajos de síntesis dirigidos a desarrollar nanodispositivos altamente ajustables y de bajo consumo energético para las tecnologías de la información. El trabajo del proyecto 2D-SMARTiES dará lugar a nuevo campo interdisciplinario, la magnónica molecular 2D, con repercusiones para la nanociencia molecular, la física del estado sólido y la ciencia de los materiales.
Objetivo
The final goal of 2D-SMARTiES is to develop a new generation of magnonic devices based on hybrid molecular/2D heterostructures in which a precise control of the spin dynamics can be achieved by external manipulation of stimuli-responsive molecules. With this aim in mind, the project will establish an efficient theoretical and computational framework to guide the synthetic efforts towards the creation of low power consumption and highly tunable nanodevices for information technologies using a chemical approach.
The recent emergence of 2D van der Waals magnetic materials provides unprecedented building-blocks to transmit, storage and process information using spin waves, whose quanta are called magnons, at the limit of miniaturization. We will exploit the potential of switchable organic and spin crossover molecules to act as emitters, modulators and detectors of magnons at interfaces formed by this class of molecules and 2D antiferromagnets. This will open a versatile route based on smart molecules to face some of the current challenges in magnonics. In concrete, we will provide: (1) a more profound understanding of the hybridization of molecular orbitals on magnetic surfaces, as well as the effect of these hybridized states on the spin dynamics of 2D magnets; (2) a software package to model magnon dynamics in hybrid materials; (3) a deep analysis of strain-magnon coupling effects due to the thermal or light-induced spin switching in spin crossover systems deposited on 2D materials; (4) an efficient quantum transport code accounting for spin-orbit torque effects to understand the enhancement of properties in the 2D material when interfaced with a topological insulator; and (5) the creation of novel devices as a proof of concept. We envision the birth of a new interdisciplinary field, namely molecular 2D magnonics, with impact in molecular nanoscience, solid-state physics and materials science leading to promising long-term applications in information technologies.
Ámbito científico
Programa(s)
- HORIZON.1.1 - European Research Council (ERC) Main Programme
Régimen de financiación
HORIZON-ERC - HORIZON ERC GrantsInstitución de acogida
46010 Valencia
España